Satellite and Scene Image Classification Based on Transfer Learning and Fine Tuning of ResNet50

计算机科学 超参数 人工智能 卷积神经网络 上下文图像分类 学习迁移 模式识别(心理学) 遥感 图像(数学) 计算机视觉 地理
作者
Amsa Shabbir,Nouman Ali,Jameel Ahmed,Bushra Zafar,Aqsa Rasheed,Muhammad Sajid,Afzal Ahmed,Saadat Hanif Dar
出处
期刊:Mathematical Problems in Engineering [Hindawi Publishing Corporation]
卷期号:2021: 1-18 被引量:17
标识
DOI:10.1155/2021/5843816
摘要

Image classification has gained lot of attention due to its application in different computer vision tasks such as remote sensing, scene analysis, surveillance, object detection, and image retrieval. The primary goal of image classification is to assign the class labels to images according to the image contents. The applications of image classification and image analysis in remote sensing are important as they are used in various applied domains such as military and civil fields. Earlier approaches for remote sensing images and scene analysis are based on low-level feature representations such as color- and texture-based features. Vector of Locally Aggregated Descriptors (VLAD) and orderless Bag-of-Features (BoF) representations are the examples of mid-level approaches for remote sensing image classification. Recent trends for remote sensing and scene classification are focused on the use of Convolutional Neural Network (CNN). Keeping in view the success of CNN models, in this research, we aim to fine-tune ResNet50 by using network surgery and creation of network head along with the fine-tuning of hyperparameters. The learning of hyperparameters is tuned by using a linear decay learning rate scheduler known as piecewise scheduler. To tune the optimizer hyperparameter, Stochastic Gradient Descent with Momentum (SGDM) is used with the usage of weight learn and bias learn rate factor. Experiments and analysis are conducted on five different datasets, that is, UC Merced Land Use Dataset (UCM), RSSCN (the remote sensing scene classification image dataset), SIRI-WHU, Corel-1K, and Corel-1.5K. The analysis and competitive results exemplify that our proposed image classification-based model can classify the images in a more effective and efficient manner as compared to the state-of-the-art research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤奋起来发布了新的文献求助10
1秒前
ling发布了新的文献求助10
2秒前
Akim应助月亮采纳,获得10
2秒前
2秒前
3秒前
颜凡桃发布了新的文献求助10
4秒前
绕啊绕发布了新的文献求助10
5秒前
6秒前
zwl111完成签到,获得积分10
6秒前
昂莫达发布了新的文献求助10
6秒前
有魅力的臻完成签到,获得积分10
7秒前
7秒前
阿新完成签到,获得积分10
7秒前
开心罡完成签到,获得积分10
8秒前
cd发布了新的文献求助10
8秒前
wanci应助if采纳,获得10
9秒前
在路上应助俊逸兰谷采纳,获得10
9秒前
9秒前
隐形曼青应助邱鑫淼采纳,获得10
9秒前
Akim应助乐乐采纳,获得10
11秒前
Akim应助xx采纳,获得10
11秒前
11秒前
12秒前
Atropine发布了新的文献求助30
12秒前
oyu完成签到,获得积分10
13秒前
13秒前
李健发布了新的文献求助10
13秒前
自信项链发布了新的文献求助10
14秒前
2889580752发布了新的文献求助10
15秒前
16秒前
绕啊绕完成签到,获得积分10
16秒前
liangliang发布了新的文献求助10
16秒前
仁爱的侯千愁完成签到 ,获得积分10
17秒前
kd完成签到 ,获得积分10
17秒前
18秒前
18秒前
乐乐应助emm采纳,获得10
18秒前
xx完成签到,获得积分20
18秒前
18秒前
18秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978526
求助须知:如何正确求助?哪些是违规求助? 3522634
关于积分的说明 11214133
捐赠科研通 3260065
什么是DOI,文献DOI怎么找? 1799744
邀请新用户注册赠送积分活动 878642
科研通“疑难数据库(出版商)”最低求助积分说明 807002