Satellite and Scene Image Classification Based on Transfer Learning and Fine Tuning of ResNet50

计算机科学 超参数 人工智能 卷积神经网络 上下文图像分类 学习迁移 模式识别(心理学) 遥感 图像(数学) 计算机视觉 地理
作者
Amsa Shabbir,Nouman Ali,Jameel Ahmed,Bushra Zafar,Aqsa Rasheed,Muhammad Sajid,Afzal Ahmed,Saadat Hanif Dar
出处
期刊:Mathematical Problems in Engineering [Hindawi Limited]
卷期号:2021: 1-18 被引量:17
标识
DOI:10.1155/2021/5843816
摘要

Image classification has gained lot of attention due to its application in different computer vision tasks such as remote sensing, scene analysis, surveillance, object detection, and image retrieval. The primary goal of image classification is to assign the class labels to images according to the image contents. The applications of image classification and image analysis in remote sensing are important as they are used in various applied domains such as military and civil fields. Earlier approaches for remote sensing images and scene analysis are based on low-level feature representations such as color- and texture-based features. Vector of Locally Aggregated Descriptors (VLAD) and orderless Bag-of-Features (BoF) representations are the examples of mid-level approaches for remote sensing image classification. Recent trends for remote sensing and scene classification are focused on the use of Convolutional Neural Network (CNN). Keeping in view the success of CNN models, in this research, we aim to fine-tune ResNet50 by using network surgery and creation of network head along with the fine-tuning of hyperparameters. The learning of hyperparameters is tuned by using a linear decay learning rate scheduler known as piecewise scheduler. To tune the optimizer hyperparameter, Stochastic Gradient Descent with Momentum (SGDM) is used with the usage of weight learn and bias learn rate factor. Experiments and analysis are conducted on five different datasets, that is, UC Merced Land Use Dataset (UCM), RSSCN (the remote sensing scene classification image dataset), SIRI-WHU, Corel-1K, and Corel-1.5K. The analysis and competitive results exemplify that our proposed image classification-based model can classify the images in a more effective and efficient manner as compared to the state-of-the-art research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
竹子发布了新的文献求助10
3秒前
李健应助NZH采纳,获得10
3秒前
醉熏的井发布了新的文献求助10
3秒前
Echo1002发布了新的文献求助10
4秒前
酷波er应助大力的镜子采纳,获得10
7秒前
9秒前
9秒前
Majician完成签到,获得积分10
12秒前
12秒前
科研小白完成签到,获得积分10
13秒前
13秒前
Echo1002完成签到,获得积分20
13秒前
李健的粉丝团团长应助TJ采纳,获得10
13秒前
14秒前
科研小白发布了新的文献求助10
15秒前
zz完成签到,获得积分10
16秒前
陶弈衡发布了新的文献求助10
16秒前
cywzhcr发布了新的文献求助10
18秒前
18秒前
21秒前
秋云完成签到 ,获得积分10
21秒前
zz发布了新的文献求助10
22秒前
爆米花应助橙子采纳,获得10
22秒前
23秒前
月月发布了新的文献求助10
24秒前
羊羊完成签到 ,获得积分10
25秒前
Keqi完成签到,获得积分10
26秒前
28秒前
赘婿应助阿刘不想学了采纳,获得10
30秒前
31秒前
竹子完成签到,获得积分10
31秒前
lenny发布了新的文献求助10
33秒前
TJ发布了新的文献求助10
33秒前
34秒前
34秒前
CipherSage应助科研通管家采纳,获得10
34秒前
34秒前
34秒前
Megumi发布了新的文献求助10
36秒前
NexusExplorer应助刘佳婷采纳,获得10
37秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161007
求助须知:如何正确求助?哪些是违规求助? 2812335
关于积分的说明 7895242
捐赠科研通 2471208
什么是DOI,文献DOI怎么找? 1315908
科研通“疑难数据库(出版商)”最低求助积分说明 631071
版权声明 602086