Satellite and Scene Image Classification Based on Transfer Learning and Fine Tuning of ResNet50

计算机科学 超参数 人工智能 卷积神经网络 上下文图像分类 学习迁移 模式识别(心理学) 遥感 图像(数学) 计算机视觉 地理
作者
Amsa Shabbir,Nouman Ali,Jameel Ahmed,Bushra Zafar,Aqsa Rasheed,Muhammad Sajid,Afzal Ahmed,Saadat Hanif Dar
出处
期刊:Mathematical Problems in Engineering [Hindawi Publishing Corporation]
卷期号:2021: 1-18 被引量:17
标识
DOI:10.1155/2021/5843816
摘要

Image classification has gained lot of attention due to its application in different computer vision tasks such as remote sensing, scene analysis, surveillance, object detection, and image retrieval. The primary goal of image classification is to assign the class labels to images according to the image contents. The applications of image classification and image analysis in remote sensing are important as they are used in various applied domains such as military and civil fields. Earlier approaches for remote sensing images and scene analysis are based on low-level feature representations such as color- and texture-based features. Vector of Locally Aggregated Descriptors (VLAD) and orderless Bag-of-Features (BoF) representations are the examples of mid-level approaches for remote sensing image classification. Recent trends for remote sensing and scene classification are focused on the use of Convolutional Neural Network (CNN). Keeping in view the success of CNN models, in this research, we aim to fine-tune ResNet50 by using network surgery and creation of network head along with the fine-tuning of hyperparameters. The learning of hyperparameters is tuned by using a linear decay learning rate scheduler known as piecewise scheduler. To tune the optimizer hyperparameter, Stochastic Gradient Descent with Momentum (SGDM) is used with the usage of weight learn and bias learn rate factor. Experiments and analysis are conducted on five different datasets, that is, UC Merced Land Use Dataset (UCM), RSSCN (the remote sensing scene classification image dataset), SIRI-WHU, Corel-1K, and Corel-1.5K. The analysis and competitive results exemplify that our proposed image classification-based model can classify the images in a more effective and efficient manner as compared to the state-of-the-art research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天向上发布了新的文献求助20
1秒前
贾珂盈完成签到,获得积分10
2秒前
科研通AI5应助史淼荷采纳,获得100
2秒前
mtl完成签到,获得积分10
2秒前
烟花应助霜降采纳,获得10
3秒前
抹茶夏天完成签到,获得积分10
4秒前
4秒前
思zj完成签到,获得积分10
4秒前
简简单单完成签到,获得积分10
5秒前
子车中蓝完成签到,获得积分10
5秒前
5秒前
5秒前
七七发布了新的文献求助10
5秒前
5秒前
罗汉完成签到 ,获得积分10
7秒前
余进步完成签到,获得积分10
8秒前
9秒前
简简单单发布了新的文献求助10
9秒前
清爽老九完成签到,获得积分10
9秒前
lsz发布了新的文献求助10
10秒前
12秒前
12秒前
晨曦完成签到,获得积分10
12秒前
东华帝君完成签到,获得积分10
13秒前
大力元霜完成签到,获得积分10
13秒前
完美世界应助赫赫采纳,获得10
13秒前
cccc完成签到 ,获得积分10
14秒前
霜降发布了新的文献求助10
15秒前
爆米花应助佩奇采纳,获得10
15秒前
15秒前
醉眠发布了新的文献求助10
16秒前
NexusExplorer应助赖风娇采纳,获得10
16秒前
20秒前
细心擎呢完成签到 ,获得积分10
21秒前
22秒前
霜降完成签到,获得积分10
22秒前
浮游应助YESKY采纳,获得10
23秒前
希望天下0贩的0应助星星采纳,获得10
24秒前
绝世大魔王完成签到 ,获得积分10
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4968638
求助须知:如何正确求助?哪些是违规求助? 4225941
关于积分的说明 13161018
捐赠科研通 4013031
什么是DOI,文献DOI怎么找? 2195868
邀请新用户注册赠送积分活动 1209298
关于科研通互助平台的介绍 1123338