Machine learning-based imputation soft computing approach for large missing scale and non-reference data imputation

缺少数据 插补(统计学) 计算机科学 数据挖掘 机器学习
作者
A. H. Alamoodi,B. B. Zaidan,A. A. Zaidan,O. S. Albahri,Juliana Chen,M. A. Chyad,Salem Garfan,Ahmed Marwan Aleesa
出处
期刊:Chaos Solitons & Fractals [Elsevier BV]
卷期号:151: 111236-111236 被引量:31
标识
DOI:10.1016/j.chaos.2021.111236
摘要

Missing data is a common problem in real-world data sets and it is amongst the most complex topics in computer science and many other research domains. The common ways to cope with missing values are either by elimination or imputation depending of the volume of the missing data and its distribution nature. It becomes imperative to come up with new imputation approaches along with efficient algorithms. Though most existing imputation methods focus on a moderate amount of missing data, imputation for high missing rates over 80% is still important but challenging. Even with the existence of some works in addressing high missing volume issue, they mostly rely on imputing reference dataset (Complete Datasets for evaluation) after they create artificial missing values and impute it to measure the accuracy of their proposed techniques. So far, the option of imputing high proportions of missing values with no reference comparison dataset (Original Dataset with highly missing values) have been often ignored or overlooked. Therefore, we propose a missing data imputation approach for high volumes of missing values with no reference comparison dataset. The approach makes use of pre-processing measures and breaking the dataset into small continuous non-missing portions then using Multi Criteria Decision-making analysis to select a portion of data which is representative of the entire broken datasets. This portion helps to create reference comparisons and expands the missing dataset through artificial missing-making procedures with different percentages and imputation using different machine learning techniques. This study conducted two experiments using BMI datasets with more than 80% of missing values, derived from the National Child Development Centre (NCDRC) at Sultan Idris Education University (UPSI), Malaysia. The results show that our approach capability in reconstructing datasets with huge missing values.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sinmwr完成签到,获得积分10
1秒前
kagaminelen发布了新的文献求助10
2秒前
青宁完成签到 ,获得积分10
3秒前
3秒前
幸福大白发布了新的文献求助30
3秒前
吴成完成签到,获得积分10
3秒前
4秒前
Lucas应助Rae采纳,获得10
4秒前
量子星尘发布了新的文献求助10
5秒前
8秒前
JAJ发布了新的文献求助10
10秒前
花蕊完成签到 ,获得积分10
10秒前
打打应助juice采纳,获得10
11秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
欢呼的忘幽完成签到,获得积分10
16秒前
仙笛童神完成签到 ,获得积分10
16秒前
完美世界应助坦率的皮带采纳,获得10
17秒前
18秒前
Ava应助复杂的如萱采纳,获得10
18秒前
19秒前
薛定谔的猫完成签到,获得积分10
20秒前
如意2023完成签到 ,获得积分10
20秒前
20秒前
荣荣发布了新的文献求助10
22秒前
科研通AI5应助周周采纳,获得10
22秒前
NanXin完成签到,获得积分10
24秒前
kagaminelen完成签到,获得积分20
24秒前
jejms完成签到,获得积分10
25秒前
幸福大白发布了新的文献求助30
25秒前
量子星尘发布了新的文献求助10
25秒前
25秒前
25秒前
阿言完成签到 ,获得积分10
25秒前
梦河完成签到 ,获得积分10
26秒前
26秒前
bkagyin应助Zeo采纳,获得10
27秒前
28秒前
万刈发布了新的文献求助10
28秒前
坦率的皮带完成签到,获得积分10
28秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662487
求助须知:如何正确求助?哪些是违规求助? 3223261
关于积分的说明 9750825
捐赠科研通 2933130
什么是DOI,文献DOI怎么找? 1605938
邀请新用户注册赠送积分活动 758208
科研通“疑难数据库(出版商)”最低求助积分说明 734743