X射线吸收精细结构
电催化剂
氧气
催化作用
氧还原反应
配位复合体
材料科学
金属有机骨架
氧还原
吸附
锌
析氧
过电位
石墨烯
选择性
化学工程
无机化学
电化学
金属
化学
密度泛函理论
塔菲尔方程
物理化学
有机化学
电极
量子力学
物理
光谱学
工程类
作者
Yaling Jia,Ziqian Xue,Jun Yang,Liu Qinglin,Jiahui Xian,Yicheng Zhong,Yamei Sun,Xiuxiu Zhang,Qinghua Liu,Dao-Xin Yao,Guangqin Li
标识
DOI:10.1002/anie.202110838
摘要
Accurately regulating the selectivity of the oxygen reduction reaction (ORR) is crucial to renewable energy storage and utilization, but challenging. A flexible alteration of ORR pathways on atomically dispersed Zn sites towards high selectivity ORR can be achieved by tailoring the coordination environment of the catalytic centers. The atomically dispersed Zn catalysts with unique O- and C-coordination structure (ZnO3C) or N-coordination structure (ZnN4) can be prepared by varying the functional groups of corresponding MOF precursors. The coordination environment of as-prepared atomically dispersed Zn catalysts was confirmed by X-ray absorption fine structure (XAFs). Notably, the ZnN4 catalyst processes a 4 e− ORR pathway to generate H2O. However, controllably tailoring the coordination environment of atomically dispersed Zn sites, ZnO3C catalyst processes a 2 e− ORR pathway to generate H2O2 with a near zero overpotential and high selectivity in 0.1 M KOH. Calculations reveal that decreased electron density around Zn in ZnO3C lowers the d-band center of Zn, thus changing the intermediate adsorption and contributing to the high selectivity towards 2 e− ORR.
科研通智能强力驱动
Strongly Powered by AbleSci AI