Chemometric analysis in Raman spectroscopy from experimental design to machine learning–based modeling

拉曼光谱 预处理器 协议(科学) 计算机科学 工作流程 人工智能 生物系统 机器学习 数据预处理 过程(计算) 模式识别(心理学) 化学计量学 生物 物理 光学 病理 操作系统 数据库 替代医学 医学
作者
Shuxia Guo,Jürgen Popp,Thomas Bocklitz
出处
期刊:Nature Protocols [Nature Portfolio]
卷期号:16 (12): 5426-5459 被引量:183
标识
DOI:10.1038/s41596-021-00620-3
摘要

Raman spectroscopy is increasingly being used in biology, forensics, diagnostics, pharmaceutics and food science applications. This growth is triggered not only by improvements in the computational and experimental setups but also by the development of chemometric techniques. Chemometric techniques are the analytical processes used to detect and extract information from subtle differences in Raman spectra obtained from related samples. This information could be used to find out, for example, whether a mixture of bacterial cells contains different species, or whether a mammalian cell is healthy or not. Chemometric techniques include spectral processing (ensuring that the spectra used for the subsequent computational processes are as clean as possible) as well as the statistical analysis of the data required for finding the spectral differences that are most useful for differentiation between, for example, different cell types. For Raman spectra, this analysis process is not yet standardized, and there are many confounding pitfalls. This protocol provides guidance on how to perform a Raman spectral analysis: how to avoid these pitfalls, and strategies to circumvent problematic issues. The protocol is divided into four parts: experimental design, data preprocessing, data learning and model transfer. We exemplify our workflow using three example datasets where the spectra from individual cells were collected in single-cell mode, and one dataset where the data were collected from a raster scanning-based Raman spectral imaging experiment of mice tissue. Our aim is to help move Raman-based technologies from proof-of-concept studies toward real-world applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
www发布了新的文献求助10
刚刚
悦耳半梦完成签到,获得积分10
1秒前
1秒前
852应助若俗人采纳,获得10
1秒前
田様应助嗯嗯你说采纳,获得10
1秒前
2秒前
2秒前
HJJHJH发布了新的文献求助100
2秒前
2秒前
3秒前
M1982发布了新的文献求助10
4秒前
4秒前
简让完成签到 ,获得积分10
4秒前
4秒前
田様应助满意文昊采纳,获得10
5秒前
Bethune发布了新的文献求助30
5秒前
gtxy发布了新的文献求助10
5秒前
6秒前
6秒前
不知名的斑完成签到,获得积分10
6秒前
surefire发布了新的文献求助10
6秒前
Jasper应助星辰采纳,获得10
7秒前
7秒前
思源应助纸飞机采纳,获得10
7秒前
2284456374完成签到,获得积分10
7秒前
8秒前
9秒前
善学以致用应助Embers采纳,获得10
9秒前
9秒前
wang2832发布了新的文献求助10
9秒前
pencil123完成签到,获得积分10
9秒前
CipherSage应助www采纳,获得10
9秒前
10秒前
斯文败类应助王泰一采纳,获得10
11秒前
cc发布了新的文献求助10
11秒前
wwww发布了新的文献求助10
11秒前
顺其自然完成签到 ,获得积分10
12秒前
12秒前
善学以致用应助wu采纳,获得10
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Wind energy generation systems - Part 3-2: Design requirements for floating offshore wind turbines 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
Conceptualizing 21st-Century Archives (2014) 238
Essays on Employer Engagement in Education 210
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3691940
求助须知:如何正确求助?哪些是违规求助? 3242477
关于积分的说明 9842432
捐赠科研通 2954577
什么是DOI,文献DOI怎么找? 1619695
邀请新用户注册赠送积分活动 766090
科研通“疑难数据库(出版商)”最低求助积分说明 739909