Multi-scale and modality dropout learning for intervertebral disc localization and segmentation

模态(人机交互) 计算机科学 分割 人工智能 辍学(神经网络) 计算机视觉 图像分割 深度学习 磁共振成像 模式识别(心理学) 比例(比率) 机器学习 医学 放射科 量子力学 物理
作者
Xiaomeng Li,Qi Dou,Hao Chen,Chi-Wing Fu,Pheng-Ann Heng
出处
期刊:Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 卷期号:: 85-
链接
摘要

Automatic localization and segmentation of intervertebral discs (IVDs) from volumetric magnetic resonance (MR) images is important for spine disease diagnosis. It dramatically alleviates the workload of radiologists given that the traditional manual annotation is time-consuming and error-prone with limited reproducibility. Compared with single modality data, multi-modality MR images are able to provide complementary information. However, how to effectively integrate them to generate more accurate segmentation results still remains open for studies. In this paper, we introduce a multi-scale and modality dropout learning framework to segment IVDs from four-modality MR images. Specifically, we design a 3D fully convolutional network which takes multiple scales of images as input and merges these pathways at higher layers to jointly integrate multi-scale information. Furthermore, in order to harness the complementary information from different modalities, we propose a modality dropout strategy to alleviate the co-adaption issue during the training. We evaluated our method on the MICCAI 2016 Challenge on Automatic Intervertebral Disc Localization and Segmentation from 3D Multi-modality MR Images. Our method achieved the best overall performance with the mean segmentation Dice as 91.2% and localization error as 0.62 mm, which demonstrated the superiority of our proposed framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
微风完成签到 ,获得积分10
刚刚
小强123发布了新的文献求助30
3秒前
4秒前
大意的柚子完成签到,获得积分10
6秒前
木炭完成签到,获得积分10
7秒前
星河清梦完成签到,获得积分10
8秒前
9秒前
liam完成签到,获得积分10
9秒前
10秒前
FFFFF发布了新的文献求助10
13秒前
脑洞疼应助半糖采纳,获得10
16秒前
烤鸭本鸭完成签到,获得积分10
16秒前
19秒前
量子星尘发布了新的文献求助10
21秒前
23秒前
ED应助半糖采纳,获得10
25秒前
万能图书馆应助SMLW采纳,获得10
25秒前
学医自救完成签到,获得积分10
25秒前
26秒前
baby完成签到,获得积分10
27秒前
李爱国应助危机的夏兰采纳,获得10
27秒前
不想起昵称完成签到 ,获得积分10
28秒前
tao完成签到 ,获得积分10
29秒前
vespa发布了新的文献求助30
30秒前
30秒前
月光颂博客完成签到 ,获得积分10
31秒前
32秒前
开放的尔芙完成签到 ,获得积分10
32秒前
ding应助风继续吹采纳,获得10
34秒前
情怀应助半糖采纳,获得10
34秒前
35秒前
SYLH应助徐涛采纳,获得10
37秒前
机智的君浩完成签到 ,获得积分10
38秒前
40秒前
在水一方应助guons采纳,获得10
41秒前
传奇3应助Archer采纳,获得10
41秒前
酷波er应助想人陪的山水采纳,获得10
41秒前
42秒前
44秒前
44秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959245
求助须知:如何正确求助?哪些是违规求助? 3505545
关于积分的说明 11124398
捐赠科研通 3237291
什么是DOI,文献DOI怎么找? 1789026
邀请新用户注册赠送积分活动 871512
科研通“疑难数据库(出版商)”最低求助积分说明 802824