Multi-scale and modality dropout learning for intervertebral disc localization and segmentation

模态(人机交互) 计算机科学 分割 人工智能 辍学(神经网络) 计算机视觉 图像分割 深度学习 磁共振成像 模式识别(心理学) 比例(比率) 机器学习 医学 放射科 物理 量子力学
作者
Xiaomeng Li,Qi Dou,Hao Chen,Chi-Wing Fu,Pheng-Ann Heng
出处
期刊:Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 卷期号:: 85-
链接
摘要

Automatic localization and segmentation of intervertebral discs (IVDs) from volumetric magnetic resonance (MR) images is important for spine disease diagnosis. It dramatically alleviates the workload of radiologists given that the traditional manual annotation is time-consuming and error-prone with limited reproducibility. Compared with single modality data, multi-modality MR images are able to provide complementary information. However, how to effectively integrate them to generate more accurate segmentation results still remains open for studies. In this paper, we introduce a multi-scale and modality dropout learning framework to segment IVDs from four-modality MR images. Specifically, we design a 3D fully convolutional network which takes multiple scales of images as input and merges these pathways at higher layers to jointly integrate multi-scale information. Furthermore, in order to harness the complementary information from different modalities, we propose a modality dropout strategy to alleviate the co-adaption issue during the training. We evaluated our method on the MICCAI 2016 Challenge on Automatic Intervertebral Disc Localization and Segmentation from 3D Multi-modality MR Images. Our method achieved the best overall performance with the mean segmentation Dice as 91.2% and localization error as 0.62 mm, which demonstrated the superiority of our proposed framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鸡蛋完成签到 ,获得积分10
刚刚
zhou123432完成签到,获得积分20
刚刚
杜萌萌完成签到,获得积分10
1秒前
李健应助十一嘞采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
乐乐应助科研通管家采纳,获得10
2秒前
zcl应助科研通管家采纳,获得20
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
wanci应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
浮生若梦应助科研通管家采纳,获得10
3秒前
浮生若梦应助科研通管家采纳,获得10
3秒前
浮生若梦应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得30
3秒前
4秒前
善学以致用应助康康采纳,获得10
4秒前
王欣茹发布了新的文献求助10
4秒前
海绵宝宝发布了新的文献求助10
5秒前
6秒前
风中黎昕完成签到 ,获得积分10
7秒前
7秒前
7秒前
zhongying发布了新的文献求助10
8秒前
Dr_JennyZ完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
海绵宝宝完成签到,获得积分10
10秒前
12秒前
沧化发布了新的文献求助10
13秒前
13秒前
柳沙鸣发布了新的文献求助10
14秒前
yangjun发布了新的文献求助10
15秒前
十一嘞发布了新的文献求助10
16秒前
织心发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5262687
求助须知:如何正确求助?哪些是违规求助? 4423535
关于积分的说明 13770052
捐赠科研通 4298274
什么是DOI,文献DOI怎么找? 2358345
邀请新用户注册赠送积分活动 1354694
关于科研通互助平台的介绍 1315914