阳极
材料科学
硅
消散
锂(药物)
电极
复合材料
离子
纳米技术
化学工程
光电子学
化学
热力学
物理
工程类
内分泌学
医学
物理化学
有机化学
作者
Linlin Hu,Xudong Zhang,Bing Li,Mihan Jin,Xiaohui Shen,Zongwu Luo,Zhanyuan Tian,Lizhi Yuan,Junkai Deng,Zhengfei Dai,Jiangxuan Song
标识
DOI:10.1016/j.cej.2021.129991
摘要
Although silicon has the highest theoretical capacity among the existing anode materials, its practical application is highly hindered by huge interface stress arising from large volume change upon cycling. Herein, an efficient energy-dissipation engineering was harnessed on high-capacity silicon anodes through a synergized "static" (chemically crosslinking) and "dynamic" (physically crosslinking) binder. In this dual network, the disassociation of non-covalent hydrogen bonds greatly facilitates the dispersion and release of unfavorable stress, while the permanent chemical bonding network enables a deformable network to sustain the electrode structure. Such a strategy effectively avoids both materials and electrodes deterioration and promises a better Si-based anode: a high areal capacity of 2 mAh cm−2 with capacity retention of 91.3% after 200 cycles. Meanwhile, the energy-dissipation mechanism was further clarified by temperature-dependent FTIR and finite element simulations.
科研通智能强力驱动
Strongly Powered by AbleSci AI