Electrical tuning of optically active interlayer excitons in bilayer MoS2

激子 凝聚态物理 双层 振荡器强度 电场 材料科学 单层 异质结 范德瓦尔斯力 物理 化学 纳米技术 量子力学 生物化学 分子 谱线
作者
Namphung Peimyoo,Thorsten Deilmann,Freddie Withers,Janire Escolar,Darren Nutting,Takashi Taniguchi,Kenji Watanabe,Alireza Taghizadeh,Monica F. Craciun,Kristian S. Thygesen,Saverio Russo
出处
期刊:Nature Nanotechnology [Springer Nature]
卷期号:16 (8): 888-893 被引量:94
标识
DOI:10.1038/s41565-021-00916-1
摘要

Interlayer (IL) excitons, comprising electrons and holes residing in different layers of van der Waals bonded two-dimensional semiconductors, have opened new opportunities for room-temperature excitonic devices. So far, two-dimensional IL excitons have been realized in heterobilayers with type-II band alignment. However, the small oscillator strength of the resulting IL excitons and difficulties with producing heterostructures with definite crystal orientation over large areas have challenged the practical applicability of this design. Here, following the theoretical prediction and recent experimental confirmation of the existence of IL excitons in bilayer MoS2, we demonstrate the electrical control of such excitons up to room temperature. We find that the IL excitonic states preserve their large oscillator strength as their energies are manipulated by the electric field. We attribute this effect to the mixing of the pure IL excitons with intralayer excitons localized in a single layer. By applying an electric field perpendicular to the bilayer MoS2 crystal plane, excitons with IL character split into two peaks with an X-shaped field dependence as a clear fingerprint of the shift of the monolayer bands with respect to each other. Finally, we demonstrate the full control of the energies of IL excitons distributed homogeneously over a large area of our device. The existence of interlayer excitons with strong oscillator strength in bilayer MoS2 enables their electrical manipulation up to room temperature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助zym采纳,获得10
刚刚
刚刚
1秒前
1秒前
柚子完成签到,获得积分10
2秒前
华仔应助初步采纳,获得10
2秒前
drjim发布了新的文献求助10
3秒前
qiuling发布了新的文献求助30
4秒前
4秒前
4秒前
4秒前
5秒前
have勇气发布了新的文献求助10
5秒前
大模型应助向乐瑶采纳,获得10
6秒前
科研通AI2S应助zz0429采纳,获得10
7秒前
秭归发布了新的文献求助10
7秒前
Tonsil01发布了新的文献求助200
7秒前
9秒前
dpp发布了新的文献求助10
9秒前
9秒前
慕青应助晓晓采纳,获得10
12秒前
Aaron应助WANG采纳,获得10
12秒前
CodeCraft应助dpp采纳,获得10
13秒前
you完成签到,获得积分10
13秒前
斯文一笑发布了新的文献求助10
14秒前
JamesPei应助钵钵鸡采纳,获得30
14秒前
隐形曼青应助元yuan采纳,获得10
14秒前
Ferris发布了新的文献求助10
16秒前
16秒前
18秒前
18秒前
18秒前
18秒前
18秒前
19秒前
好好学习应助如意的灵枫采纳,获得10
20秒前
dpp完成签到,获得积分20
21秒前
Akim应助简单的钢铁侠采纳,获得10
21秒前
乐陶发布了新的文献求助10
21秒前
21秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
The Three Stars Each: The Astrolabes and Related Texts 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Product Class 33: N-Arylhydroxylamines 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3386887
求助须知:如何正确求助?哪些是违规求助? 2999939
关于积分的说明 8787738
捐赠科研通 2685689
什么是DOI,文献DOI怎么找? 1471131
科研通“疑难数据库(出版商)”最低求助积分说明 680167
邀请新用户注册赠送积分活动 672766