数学
操作员(生物学)
高斯分布
有界函数
协方差
纯数学
高斯过程
高斯随机场
离散数学
功能(生物学)
系列(地层学)
组合数学
数学分析
统计
物理
化学
生物化学
抑制因子
古生物学
基因
生物
转录因子
进化生物学
量子力学
作者
Guozheng Cheng,Xiang Fang,Kun Guo,Chao Liu
出处
期刊:Cornell University - arXiv
日期:2020-07-13
被引量:1
标识
DOI:10.48550/arxiv.2007.06285
摘要
We prove a Littlewood-type theorem on random analytic functions for not necessarily independent Gaussian processes. We show that if we randomize a function in the Hardy space $H^2(\dd)$ by a Gaussian process whose covariance matrix $K$ induces a bounded operator on $l^2$, then the resulting random function is almost surely in $H^p(\dd)$ for any $p>0$. The case $K=\text{Id}$, the identity operator, recovers Littlewood's theorem. A new ingredient in our proof is to recast the membership problem as the boundedness of an operator. This reformulation enables us to use tools in functional analysis and is applicable to other situations. The sharpness of the new condition and several ramifications are discussed.
科研通智能强力驱动
Strongly Powered by AbleSci AI