李雅普诺夫函数
控制理论(社会学)
执行机构
约束(计算机辅助设计)
控制(管理)
高超音速飞行
高超音速
功能(生物学)
Lyapunov重新设计
计算机科学
攻角
航空航天工程
工程类
空气动力学
人工智能
物理
非线性系统
机械工程
生物
进化生物学
量子力学
作者
Bin Xu,Zhongke Shi,Fuchun Sun,Wei He
出处
期刊:IEEE transactions on cybernetics
[Institute of Electrical and Electronics Engineers]
日期:2018-02-19
卷期号:49 (3): 1047-1057
被引量:193
标识
DOI:10.1109/tcyb.2018.2794972
摘要
This paper investigates a fault-tolerant control of the hypersonic flight vehicle using back-stepping and composite learning. With consideration of angle of attack (AOA) constraint caused by scramjet, the control laws are designed based on barrier Lyapunov function. To deal with the unknown actuator faults, a robust adaptive allocation law is proposed to provide the compensation. Meanwhile, to obtain good system uncertainty approximation, the composite learning is proposed for the update of neural weights by constructing the serial–parallel estimation model to obtain the prediction error which can dynamically indicate how the intelligent approximation is working. Simulation results show that the controller obtains good system tracking performance in the presence of AOA constraint and actuator faults.
科研通智能强力驱动
Strongly Powered by AbleSci AI