纳米颗粒
靶向给药
药品
纳米技术
纳米医学
超分子化学
药物输送
体内
小分子
材料科学
计算生物学
分子
化学
药理学
生物
生物化学
生物技术
有机化学
作者
Yosi Shamay,Janki Shah,Mehtap Işık,Aviram Mizrachi,Josef Leibold,Darjus F. Tschaharganeh,Daniel Roxbury,Januka Budhathoki-Uprety,Karla Nawaly,James L. Sugarman,Emily Baut,Michelle R. Neiman,Megan M. Dacek,Kripa S. Ganesh,Darren C. Johnson,Ramya Sridharan,Eren L. Chu,Vinagolu K. Rajasekhar,Scott W. Lowe,John D. Chodera
出处
期刊:Nature Materials
[Nature Portfolio]
日期:2018-02-02
卷期号:17 (4): 361-368
被引量:171
标识
DOI:10.1038/s41563-017-0007-z
摘要
Development of targeted nanoparticle drug carriers often requires complex synthetic schemes involving both supramolecular self-assembly and chemical modification. These processes are generally difficult to predict, execute, and control. We describe herein a targeted drug delivery system that is accurately and quantitatively predicted to self-assemble into nanoparticles based on the molecular structures of precursor molecules, which are the drugs themselves. The drugs assemble with the aid of sulfated indocyanines into particles with ultrahigh drug loadings of up to 90%. We devised quantitative structure-nanoparticle assembly prediction (QSNAP) models to identify and validate electrotopological molecular descriptors as highly predictive indicators of nano-assembly and nanoparticle size. The resulting nanoparticles selectively targeted kinase inhibitors to caveolin-1-expressing human colon cancer and autochthonous liver cancer models to yield striking therapeutic effects while avoiding pERK inhibition in healthy skin. This finding enables the computational design of nanomedicines based on quantitative models for drug payload selection.
科研通智能强力驱动
Strongly Powered by AbleSci AI