范德瓦尔斯力
材料科学
旋节分解
电介质
异质结
旋节
化学物理
相(物质)
极地的
凝聚态物理
纳米技术
相变
Crystal(编程语言)
光电子学
化学
分子
有机化学
物理
天文
计算机科学
程序设计语言
作者
Michael A. Susner,Alex Belianinov,Albina Y. Borisevich,Qian He,Marius Chyasnavichyus,Hakan Demir,David S. Sholl,Panchapakesan Ganesh,D. L. Abernathy,Michael A. McGuire,Petro Maksymovych
出处
期刊:ACS Nano
[American Chemical Society]
日期:2015-11-13
卷期号:9 (12): 12365-12373
被引量:77
标识
DOI:10.1021/acsnano.5b05682
摘要
Research in the rapidly developing field of 2D electronic materials has thus far been focused on metallic and semiconducting materials. However, complementary dielectric materials such as nonlinear dielectrics are needed to enable realistic device architectures. Candidate materials require tunable dielectric properties and pathways for heterostructure assembly. Here we report on a family of cation-deficient transition metal thiophosphates whose unique chemistry makes them a viable prospect for these applications. In these materials, naturally occurring ferrielectric heterostructures composed of centrosymmetric In4/3P2S6 and ferrielectrically active CuInP2S6 are realized by controllable chemical phase separation in van der Waals bonded single crystals. CuInP2S6 by itself is a layered ferrielectric with a ferrielectric transition temperature (Tc) just over room temperature, which rapidly decreases with homogeneous doping. Surprisingly, in our composite materials, the ferrielectric Tc of the polar CuInP2S6 phase increases. This effect is enabled by unique spinodal decomposition that retains the overall van der Waals layered morphology of the crystal, but chemically separates CuInP2S6 and In4/3P2S6 within each layer. The average spatial periodicity of the distinct chemical phases can be finely controlled by altering the composition and/or synthesis conditions. One intriguing prospect for such layered spinodal alloys is large volume synthesis of 2D in-plane heterostructures with periodically alternating polar and nonpolar phases.
科研通智能强力驱动
Strongly Powered by AbleSci AI