生物
肌萎缩侧索硬化
损失函数
斑马鱼
基因敲除
突变体
突变
遗传学
细胞生物学
表型
基因
内科学
疾病
医学
作者
Edor Kabashi,Hajer El Oussini,Valérie Bercier,François Gros‐Louis,Paul N. Valdmanis,Jonathan R. McDearmid,Inge A. Mejier,Patrick A. Dion,Nicolas Dupré,David Y. Hollinger,Jérôme Sinniger,Sylvie Dirrig‐Grosch,William Camu,Vincent Meininger,Jean‐Philippe Loeffler,Frédérique René,Pierre Drapeau,Guy A. Rouleau,Luc Dupuis
摘要
The mutations P56S and T46I in the gene encoding vesicle-associated membrane protein-associated protein B/C (VAPB) cause ALS8, a familial form of amyotrophic lateral sclerosis (ALS). Overexpression of mutant forms of VAPB leads to cytosolic aggregates, suggesting a gain of function of the mutant protein. However, recent work suggested that the loss of VAPB function could be the major mechanism leading to ALS8. Here, we used multiple genetic and experimental approaches to study whether VAPB loss of function might be sufficient to trigger motor neuron degeneration. In order to identify additional ALS-associated VAPB mutations, we screened the entire VAPB gene in a cohort of ALS patients and detected two mutations (A145V and S160Δ). To directly address the contribution of VAPB loss of function in ALS, we generated zebrafish and mouse models with either a decreased or a complete loss of Vapb expression. Vapb knockdown in zebrafish led to swimming deficits. Mice knocked-out for Vapb showed mild motor deficits after 18 months of age yet had innervated neuromuscular junctions (NMJs). Importantly, overexpression of VAPB mutations were unable to rescue the motor deficit caused by Vapb knockdown in zebrafish and failed to cause a toxic gain-of-function defect on their own. Thus, Vapb loss of function weakens the motor system of vertebrate animal models but is on its own unable to lead to a complete ALS phenotype. Our findings are consistent with the notion that VAPB mutations constitute a risk factor for motor neuron disease through a loss of VAPB function.
科研通智能强力驱动
Strongly Powered by AbleSci AI