An EEMD-ICA Approach to Enhancing Artifact Rejection for Noisy Multivariate Neural Data

模式识别(心理学) 工件(错误) 希尔伯特-黄变换 计算机科学 人工智能 独立成分分析 预处理器 小波 多元统计 人工神经网络 语音识别 均方误差 数学 机器学习 计算机视觉 统计 滤波器(信号处理)
作者
Ke Zeng,Dan Chen,Gaoxiang Ouyang,Lizhe Wang,Xianzeng Liu,Xiaoli Li
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:24 (6): 630-638 被引量:71
标识
DOI:10.1109/tnsre.2015.2496334
摘要

As neural data are generally noisy, artifact rejection is crucial for data preprocessing. It has long been a grand research challenge for an approach which is able: 1) to remove the artifacts and 2) to avoid loss or disruption of the structural information at the same time, thus the risk of introducing bias to data interpretation may be minimized. In this study, an approach (namely EEMD-ICA) was proposed to first decompose multivariate neural data that are possibly noisy into intrinsic mode functions (IMFs) using ensemble empirical mode decomposition (EEMD). Independent component analysis (ICA) was then applied to the IMFs to separate the artifactual components. The approach was tested against the classical ICA and the automatic wavelet ICA (AWICA) methods, which were dominant methods for artifact rejection. In order to evaluate the effectiveness of the proposed approach in handling neural data possibly with intensive noises, experiments on artifact removal were performed using semi-simulated data mixed with a variety of noises. Experimental results indicate that the proposed approach continuously outperforms the counterparts in terms of both normalized mean square error (NMSE) and Structure SIMilarity (SSIM). The superiority becomes even greater with the decrease of SNR in all cases, e.g., SSIM of the EEMD-ICA can almost double that of AWICA and triple that of ICA. To further examine the potentials of the approach in sophisticated applications, the approach together with the counterparts were used to preprocess a real-life epileptic EEG with absence seizure. Experiments were carried out with the focus on characterizing the dynamics of the data after artifact rejection, i.e., distinguishing seizure-free, pre-seizure and seizure states. Using multi-scale permutation entropy to extract feature and linear discriminant analysis for classification, the EEMD-ICA performed the best for classifying the states (87.4%, about 4.1% and 8.7% higher than that of AWICA and ICA respectively), which was closest to the results of the manually selected dataset (89.7%).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
灵巧鑫发布了新的文献求助10
1秒前
zzr123发布了新的文献求助10
1秒前
1秒前
1秒前
曦梦源完成签到,获得积分10
1秒前
共享精神应助飞快的代天采纳,获得10
2秒前
白华苍松发布了新的文献求助10
2秒前
Hyc28441711发布了新的文献求助10
2秒前
一问三不知先生完成签到,获得积分10
2秒前
春风沂水发布了新的文献求助40
3秒前
云端梦境发布了新的文献求助10
3秒前
4秒前
4秒前
奇怪的茶叶菌完成签到,获得积分10
4秒前
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
Owen应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
Jasper应助科研通管家采纳,获得10
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
Dali应助科研通管家采纳,获得10
6秒前
6秒前
Owen应助科研通管家采纳,获得10
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
社会主义接班人完成签到 ,获得积分10
6秒前
ilihe应助科研通管家采纳,获得10
6秒前
Stella应助科研通管家采纳,获得10
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587388
求助须知:如何正确求助?哪些是违规求助? 4670503
关于积分的说明 14783142
捐赠科研通 4622601
什么是DOI,文献DOI怎么找? 2531265
邀请新用户注册赠送积分活动 1499954
关于科研通互助平台的介绍 1468066