已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An EEMD-ICA Approach to Enhancing Artifact Rejection for Noisy Multivariate Neural Data

模式识别(心理学) 工件(错误) 希尔伯特-黄变换 计算机科学 人工智能 独立成分分析 预处理器 小波 多元统计 人工神经网络 语音识别 均方误差 数学 机器学习 计算机视觉 统计 滤波器(信号处理)
作者
Ke Zeng,Dan Chen,Gaoxiang Ouyang,Lizhe Wang,Xianzeng Liu,Xiaoli Li
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:24 (6): 630-638 被引量:71
标识
DOI:10.1109/tnsre.2015.2496334
摘要

As neural data are generally noisy, artifact rejection is crucial for data preprocessing. It has long been a grand research challenge for an approach which is able: 1) to remove the artifacts and 2) to avoid loss or disruption of the structural information at the same time, thus the risk of introducing bias to data interpretation may be minimized. In this study, an approach (namely EEMD-ICA) was proposed to first decompose multivariate neural data that are possibly noisy into intrinsic mode functions (IMFs) using ensemble empirical mode decomposition (EEMD). Independent component analysis (ICA) was then applied to the IMFs to separate the artifactual components. The approach was tested against the classical ICA and the automatic wavelet ICA (AWICA) methods, which were dominant methods for artifact rejection. In order to evaluate the effectiveness of the proposed approach in handling neural data possibly with intensive noises, experiments on artifact removal were performed using semi-simulated data mixed with a variety of noises. Experimental results indicate that the proposed approach continuously outperforms the counterparts in terms of both normalized mean square error (NMSE) and Structure SIMilarity (SSIM). The superiority becomes even greater with the decrease of SNR in all cases, e.g., SSIM of the EEMD-ICA can almost double that of AWICA and triple that of ICA. To further examine the potentials of the approach in sophisticated applications, the approach together with the counterparts were used to preprocess a real-life epileptic EEG with absence seizure. Experiments were carried out with the focus on characterizing the dynamics of the data after artifact rejection, i.e., distinguishing seizure-free, pre-seizure and seizure states. Using multi-scale permutation entropy to extract feature and linear discriminant analysis for classification, the EEMD-ICA performed the best for classifying the states (87.4%, about 4.1% and 8.7% higher than that of AWICA and ICA respectively), which was closest to the results of the manually selected dataset (89.7%).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黄垚发布了新的文献求助10
2秒前
3秒前
情怀应助NaCl采纳,获得10
4秒前
穆一手完成签到 ,获得积分10
5秒前
5秒前
8秒前
钱念波完成签到 ,获得积分0
9秒前
蒋瑞轩发布了新的文献求助10
9秒前
王彬完成签到,获得积分10
11秒前
令狐凝阳完成签到,获得积分10
12秒前
JamesPei应助种太阳采纳,获得10
12秒前
令狐凝阳发布了新的文献求助10
14秒前
21秒前
安娜完成签到,获得积分10
26秒前
28秒前
29秒前
玖月发布了新的文献求助10
30秒前
畅快的枫发布了新的文献求助100
32秒前
35秒前
访烟发布了新的文献求助10
35秒前
36秒前
重要的小刘完成签到,获得积分10
36秒前
39秒前
洪武大帝发布了新的文献求助10
40秒前
44秒前
orixero应助纳米大亨采纳,获得10
45秒前
访烟完成签到,获得积分20
46秒前
科研通AI2S应助科研通管家采纳,获得10
49秒前
丘比特应助科研通管家采纳,获得10
49秒前
49秒前
SciGPT应助科研通管家采纳,获得10
50秒前
在水一方应助科研通管家采纳,获得10
50秒前
50秒前
50秒前
SuperD完成签到,获得积分10
50秒前
51秒前
51秒前
55秒前
liuxia完成签到,获得积分10
55秒前
57秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Generative AI in Higher Education 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3356743
求助须知:如何正确求助?哪些是违规求助? 2980319
关于积分的说明 8693759
捐赠科研通 2661932
什么是DOI,文献DOI怎么找? 1457450
科研通“疑难数据库(出版商)”最低求助积分说明 674786
邀请新用户注册赠送积分活动 665705