An EEMD-ICA Approach to Enhancing Artifact Rejection for Noisy Multivariate Neural Data

模式识别(心理学) 工件(错误) 希尔伯特-黄变换 计算机科学 人工智能 独立成分分析 预处理器 小波 多元统计 人工神经网络 语音识别 均方误差 数学 机器学习 计算机视觉 统计 滤波器(信号处理)
作者
Ke Zeng,Dan Chen,Gaoxiang Ouyang,Lizhe Wang,Xianzeng Liu,Xiaoli Li
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:24 (6): 630-638 被引量:71
标识
DOI:10.1109/tnsre.2015.2496334
摘要

As neural data are generally noisy, artifact rejection is crucial for data preprocessing. It has long been a grand research challenge for an approach which is able: 1) to remove the artifacts and 2) to avoid loss or disruption of the structural information at the same time, thus the risk of introducing bias to data interpretation may be minimized. In this study, an approach (namely EEMD-ICA) was proposed to first decompose multivariate neural data that are possibly noisy into intrinsic mode functions (IMFs) using ensemble empirical mode decomposition (EEMD). Independent component analysis (ICA) was then applied to the IMFs to separate the artifactual components. The approach was tested against the classical ICA and the automatic wavelet ICA (AWICA) methods, which were dominant methods for artifact rejection. In order to evaluate the effectiveness of the proposed approach in handling neural data possibly with intensive noises, experiments on artifact removal were performed using semi-simulated data mixed with a variety of noises. Experimental results indicate that the proposed approach continuously outperforms the counterparts in terms of both normalized mean square error (NMSE) and Structure SIMilarity (SSIM). The superiority becomes even greater with the decrease of SNR in all cases, e.g., SSIM of the EEMD-ICA can almost double that of AWICA and triple that of ICA. To further examine the potentials of the approach in sophisticated applications, the approach together with the counterparts were used to preprocess a real-life epileptic EEG with absence seizure. Experiments were carried out with the focus on characterizing the dynamics of the data after artifact rejection, i.e., distinguishing seizure-free, pre-seizure and seizure states. Using multi-scale permutation entropy to extract feature and linear discriminant analysis for classification, the EEMD-ICA performed the best for classifying the states (87.4%, about 4.1% and 8.7% higher than that of AWICA and ICA respectively), which was closest to the results of the manually selected dataset (89.7%).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zjh33发布了新的文献求助10
1秒前
zhangjworks完成签到,获得积分20
1秒前
xxxxxxx发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
雪白依云完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
科研通AI6.1应助FEN采纳,获得10
3秒前
3秒前
万能图书馆应助轩辕十四采纳,获得10
6秒前
together完成签到,获得积分10
7秒前
愉快如天发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
tang完成签到,获得积分10
9秒前
笑点低钥匙完成签到,获得积分10
10秒前
10秒前
10秒前
孟虹沅应助Peng采纳,获得10
10秒前
许烨完成签到,获得积分10
11秒前
科研通AI6.1应助而与白醋采纳,获得10
11秒前
Lucas应助佳佳爱学习采纳,获得30
12秒前
22完成签到,获得积分10
13秒前
13秒前
13秒前
CipherSage应助MQ采纳,获得20
14秒前
css发布了新的文献求助10
14秒前
14秒前
缥缈南露发布了新的文献求助10
14秒前
15秒前
15秒前
15秒前
15秒前
15秒前
kean1943完成签到,获得积分10
15秒前
123cvh完成签到,获得积分20
17秒前
ding应助缥缈南露采纳,获得10
18秒前
科研通AI6.1应助ccc采纳,获得10
18秒前
archsaly完成签到,获得积分10
18秒前
YJ完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784255
求助须知:如何正确求助?哪些是违规求助? 5681721
关于积分的说明 15463641
捐赠科研通 4913544
什么是DOI,文献DOI怎么找? 2644711
邀请新用户注册赠送积分活动 1592596
关于科研通互助平台的介绍 1547133