Most of the previous proxy re-encryption schemes rely on the average-case hardness problems such as the integer factorization problems and the discrete logarithm problems. Therefore, they cannot guarantee its security under quantum analysis, since there exist quantum algorithms efficiently solving the factorization and logarithm problems. In the paper, we propose the first proxy re-encryption scheme based on the hard worst-case lattice problems. Our scheme has many useful properties as follows: Unidirectional, collusion-resistant, noninteractive, proxy invisible, key optimal, and nontransitive. We also provided the formal security proof of the proposed scheme in the random oracle model.