Tailoring Impact Toughness of Poly(l-lactide)/Poly(ε-caprolactone) (PLLA/PCL) Blends by Controlling Crystallization of PLLA Matrix

材料科学 结晶度 韧性 复合材料 结晶 聚合物 极限抗拉强度 可生物降解聚合物 艾氏冲击强度试验 丙交酯 化学工程 聚合 工程类
作者
Hongwei Bai,Hao Xiu,Jian Gao,Hua Deng,Qin Zhang,Mingbo Yang,Qiang Fu
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:4 (2): 897-905 被引量:232
标识
DOI:10.1021/am201564f
摘要

Melt blending poly(l-lactide) (PLLA) with various biodegradable polymers has been thought to be the most economic and effective route to toughen PLLA without compromising its biodegradability. Unfortunately, only very limited improvement in notched impact toughness can be achieved, although most of these blends show significant enhancement in tensile toughness. In this work, biodegradable poly(ε-caprolactone) (PCL) was used as an impact modifier to toughen PLLA and a nucleating agent was utilized to tailor the crystallization of PLLA matrix. Depending on the nucleating agent concentrations in the matrix and mold temperatures in injection molding, PLLA/PCL blends with a wide range of matrix crystallinity (10–50%) were prepared by practical injection molding. The results show that there is a linear relationship between PLLA matrix crystallinity and impact toughness. With the increase in PLLA crystalline content, toughening becomes much easier to achieve. PLLA crystals are believed to provide a path for the propagation of shear yielding needed for effective impact energy absorption, and then, excellent toughening effect can be obtained when these crystals percolate through the whole matrix. This investigation provides not only a new route to prepare sustainable PLLA products with good impact toughness but also a fresh insight into the importance of matrix crystallization in the toughening of semicrystalline polymers with a flexible polymer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮生若梦发布了新的文献求助10
1秒前
2秒前
2秒前
ho完成签到,获得积分10
3秒前
3秒前
4秒前
5秒前
5秒前
5秒前
6秒前
weird完成签到,获得积分10
6秒前
JamesPei应助TTT采纳,获得10
7秒前
杨哈哈发布了新的文献求助10
7秒前
靓丽翩跹发布了新的文献求助10
8秒前
8秒前
LXP发布了新的文献求助10
9秒前
9秒前
丁丁发布了新的文献求助10
9秒前
wx发布了新的文献求助10
9秒前
wanci应助lunjianchi采纳,获得10
11秒前
在水一方应助weirdo采纳,获得30
11秒前
yiluxiangbei完成签到,获得积分10
11秒前
HoaryZ完成签到,获得积分10
12秒前
我是老大应助gejingshu采纳,获得10
12秒前
bkagyin应助enchanted采纳,获得10
12秒前
eva完成签到,获得积分10
15秒前
左友铭完成签到 ,获得积分10
15秒前
17秒前
17秒前
18秒前
Minue完成签到,获得积分20
20秒前
哎哟很烦发布了新的文献求助10
21秒前
21秒前
21秒前
21秒前
8R60d8应助lzy采纳,获得10
22秒前
ding应助wx采纳,获得10
22秒前
小太阳完成签到,获得积分10
23秒前
weirdo发布了新的文献求助30
23秒前
端庄芙完成签到,获得积分10
25秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313969
求助须知:如何正确求助?哪些是违规求助? 2946329
关于积分的说明 8529696
捐赠科研通 2621983
什么是DOI,文献DOI怎么找? 1434250
科研通“疑难数据库(出版商)”最低求助积分说明 665190
邀请新用户注册赠送积分活动 650774