Early-Stage Alzheimer's Disease Prediction Using Machine Learning Models

痴呆 疾病 随机森林 机器学习 人口 决策树 人工智能 医学诊断 医学 阿尔茨海默病 计算机科学 老年学 内科学 病理 环境卫生
作者
C. Kavitha,Vinodhini Mani,S. Srividhya,Osamah Ibrahim Khalaf,Carlos Andrés Tavera Romero
出处
期刊:Frontiers in Public Health [Frontiers Media SA]
卷期号:10 被引量:159
标识
DOI:10.3389/fpubh.2022.853294
摘要

Alzheimer's disease (AD) is the leading cause of dementia in older adults. There is currently a lot of interest in applying machine learning to find out metabolic diseases like Alzheimer's and Diabetes that affect a large population of people around the world. Their incidence rates are increasing at an alarming rate every year. In Alzheimer's disease, the brain is affected by neurodegenerative changes. As our aging population increases, more and more individuals, their families, and healthcare will experience diseases that affect memory and functioning. These effects will be profound on the social, financial, and economic fronts. In its early stages, Alzheimer's disease is hard to predict. A treatment given at an early stage of AD is more effective, and it causes fewer minor damage than a treatment done at a later stage. Several techniques such as Decision Tree, Random Forest, Support Vector Machine, Gradient Boosting, and Voting classifiers have been employed to identify the best parameters for Alzheimer's disease prediction. Predictions of Alzheimer's disease are based on Open Access Series of Imaging Studies (OASIS) data, and performance is measured with parameters like Precision, Recall, Accuracy, and F1-score for ML models. The proposed classification scheme can be used by clinicians to make diagnoses of these diseases. It is highly beneficial to lower annual mortality rates of Alzheimer's disease in early diagnosis with these ML algorithms. The proposed work shows better results with the best validation average accuracy of 83% on the test data of AD. This test accuracy score is significantly higher in comparison with existing works.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
FashionBoy应助能干的茗采纳,获得10
2秒前
深情安青应助vvx采纳,获得10
2秒前
2秒前
nianyu发布了新的文献求助10
3秒前
3秒前
祈愿完成签到,获得积分20
6秒前
酷波er应助五花肉采纳,获得10
6秒前
脑洞疼应助dc123456采纳,获得10
7秒前
Starwalker应助move采纳,获得10
7秒前
清森发布了新的文献求助10
9秒前
9秒前
慕青应助soo采纳,获得10
10秒前
李健应助小王采纳,获得10
11秒前
郭骏怡发布了新的文献求助10
12秒前
linyalala发布了新的文献求助10
16秒前
猫了个喵完成签到,获得积分10
20秒前
清爽的雨竹完成签到 ,获得积分10
21秒前
ss发布了新的文献求助30
23秒前
botanist完成签到 ,获得积分10
24秒前
24秒前
Ava应助斯文的莫英采纳,获得10
24秒前
Akim应助linyalala采纳,获得10
24秒前
打打应助现代初珍采纳,获得10
24秒前
小遇完成签到 ,获得积分10
25秒前
勤奋语蕊完成签到,获得积分10
25秒前
box123发布了新的文献求助10
27秒前
大白包子李完成签到,获得积分10
27秒前
五花肉发布了新的文献求助10
29秒前
yyang完成签到 ,获得积分10
29秒前
29秒前
30秒前
30秒前
星空下的皮先生完成签到,获得积分10
30秒前
zhangyue092200完成签到 ,获得积分10
31秒前
32秒前
chen完成签到 ,获得积分10
32秒前
垚祎完成签到 ,获得积分10
33秒前
33秒前
Ava应助科研通管家采纳,获得10
33秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314062
求助须知:如何正确求助?哪些是违规求助? 2946490
关于积分的说明 8530274
捐赠科研通 2622160
什么是DOI,文献DOI怎么找? 1434341
科研通“疑难数据库(出版商)”最低求助积分说明 665242
邀请新用户注册赠送积分活动 650804