串联
催化作用
法拉第效率
二氧化碳电化学还原
电化学
电极
二氧化碳
化学工程
停留时间(流体动力学)
气体扩散电极
化学
碳纤维
扩散
材料科学
纳米技术
一氧化碳
有机化学
复合材料
复合数
物理化学
工程类
岩土工程
物理
热力学
作者
Tianyu Zhang,Justin C. Bui,Zhengyuan Li,Alexis T. Bell,Adam Z. Weber,Jingjie Wu
出处
期刊:Nature Catalysis
[Springer Nature]
日期:2022-03-03
卷期号:5 (3): 202-211
被引量:151
标识
DOI:10.1038/s41929-022-00751-0
摘要
Electrochemical CO2 reduction provides a promising route to the sustainable generation of valuable chemicals and fuels. Tandem catalysts enable sequential CO2-to-CO and CO-to-multicarbon (C2+) product conversions on complementary active sites, to produce high C2+ Faradaic efficiency (FE). Unfortunately, previous tandem catalysts exhibit poor management of CO intermediates, which diminishes C2+ FE. Here, we design segmented gas-diffusion electrodes (s-GDEs) in which a CO-selective catalyst layer (CL) segment at the inlet prolongs CO residence time in the subsequent C2+-selective segment, enhancing conversion. This phenomenon enables increases in both the CO utilization and C2+ current density for a Cu/Ag s-GDE compared to pure Cu, by increasing the *CO coverage within the Cu CL. Lastly, we develop a Cu/Fe-N-C s-GDE with 90% C2+ FE at C2+ partial current density (jC2+) exceeding 1 A cm−2. These results prove the importance of transport and establish design principles to improve C2+ FE and jC2+ in tandem CO2 reduction. Poor management of gas flow limits efficiency in tandem (two-catalyst) electrocatalytic CO2 reduction. Here, the authors develop a segmented gas-diffusion electrode architecture that prolongs the residence time of CO (produced by the first catalyst) at the second catalyst, resulting in high production of further reduced yields.
科研通智能强力驱动
Strongly Powered by AbleSci AI