热固性聚合物
材料科学
复合材料
芳纶
摩擦学
极限抗拉强度
润湿
热稳定性
化学工程
纤维
工程类
作者
Yuzhu Yang,Chunying Min,Zhiwei Xu,Hongyu Liang,Q. Li,Mingyang Ji,S. Liu,Wei Wang,Nan Li,Xiaoyuan Pei
标识
DOI:10.1016/j.mtchem.2022.100795
摘要
In this work, dense molybdenum disulfide (MoS2) nanosheets were grown onto polydopamine (PDA) functionalized aramid fabric (AF) surface via a simple hydrothermal method to improve the wettability between AF surface and polyhexahydrotriazine (PHT) resin, thus resulting in stronger AF/resin interfacial bonding. The PDA-assisted surface modification on AF generated a high active interface allowing the nucleation and subsequent growth of MoS2. Moreover, this nanosheet-coated reinforcement fiber enabled the viscous liquid of resin precursor to spread over and form intimate contact with its surface, which eventually promoted the formation of strong interfacial bonding between AF-MoS2 and cured resin matrix. In addition, the enhanced interfacial bonding between the reinforcement and matrix generated stable mechanical interlock within the resulting AF-MoS2/PHT composites, and thus, contributed better thermal stability, higher tensile strength, and tribological properties. Compared with AF/PHT composites, the tensile strength and elongation at break of the AF-MoS2/PHT composites increased by 32.5% and 50%, and the average friction coefficient and wear rate of AF-MoS2/PHT composites decreased by 43.9% and 86.3%, respectively. Furthermore, the composites realized the non-destructive recovery of expensive AF at 25 °C. Overall, our study demonstrates a dependable strategy to construct the recyclable AF-MoS2/PHT composites, which exhibit valuable applications in tribology.
科研通智能强力驱动
Strongly Powered by AbleSci AI