作者
Anandhu Mohan,Mohammad H. Al‐Sayah,Abdelrahman Ahmed,Oussama M. El‐Kadri
摘要
Abstract The capture and safe storage of radioactive iodine ( 129 I or 131 I) are of a compelling significance in the generation of nuclear energy and waste storage. Because of their physiochemical properties, Porous Organic Polymers (POPs) are considered to be one of the most sought classes of materials for iodine capture and storage. Herein, we report on the preparation and characterization of two triazine-based, nitrogen-rich, porous organic polymers, NRPOP-1 (SA BET = 519 m 2 g −1 ) and NRPOP-2 (SA BET = 456 m 2 g −1 ), by reacting 1,3,5-triazine-2,4,6-triamine or 1,4-bis-(2,4-diamino-1,3,5-triazine)-benzene with thieno[2,3-b]thiophene-2,5-dicarboxaldehyde, respectively, and their use in the capture of volatile iodine. NRPOP-1 and NRPOP-2 showed a high adsorption capacity of iodine vapor with an uptake of up to 317 wt % at 80 °C and 1 bar and adequate recyclability. The NRPOPs were also capable of removing up to 87% of iodine from 300 mg L −1 iodine-cyclohexane solution. Furthermore, the iodine-loaded polymers, I 2 @NRPOP-1 and I 2 @NRPOP-2, displayed good antibacterial activity against Micrococcus luteus (ML), Escherichia coli (EC), and Pseudomonas aeruginosa (PSA). The synergic functionality of these novel polymers makes them promising materials to the environment and public health.