Few-Shot learning for face recognition in the presence of image discrepancies for limited multi-class datasets

人工智能 计算机科学 新颖性 面子(社会学概念) 模式识别(心理学) 面部识别系统 图像(数学) 班级(哲学) 弹丸 深度学习 机器学习 一次性 旋转(数学) 计算机视觉 新知识检测 社会学 哲学 工程类 有机化学 化学 机械工程 社会科学 神学
作者
Ashwamegha Holkar,Rahee Walambe,Ketan Kotecha
出处
期刊:Image and Vision Computing [Elsevier BV]
卷期号:120: 104420-104420 被引量:13
标识
DOI:10.1016/j.imavis.2022.104420
摘要

One of the primary limitations of deep learning is data-hungry techniques. Deep learning approaches do not typically generalize well for limited datasets with fewer samples. Drawing the inspiration from the way human beings are capable of detecting a face from very few images seen in past (experience), Few-Shot Learning methods are reported in the literature. The problem is more challenging for face recognition tasks for limited dataset where the facial images are captured in various unfavorable conditions (i.e. discrepancies). To that end, in this work, we propose the Siamese Network-based Few-Shot Learning method for multi-class face recognition from a training dataset consisting of only a handful of images per class. We consider three such face image discrepancies namely, low light, head rotation and occlusion. Our work offers novelty primarily in the way the image discrepancies are overcome via Few-Shot learning while recognizing the face with reasonable accuracy. The results are obtained on our manually collected primary dataset (SCAAI_FSL) for multiple classes. Our approach presents a unique solution for face recognition tasks where the images in the training and testing dataset have different discrepancies which is the typical real-world scenario. We have experimented with various face embeddings models and demonstrated our approach for simultaneously handling multiple image discrepancies for SCAAI_FSL dataset and reported the testing accuracy of 72.72%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雨后完成签到 ,获得积分10
刚刚
Augenstern完成签到,获得积分10
刚刚
溆玉碎兰笑完成签到 ,获得积分10
2秒前
李大胖胖完成签到 ,获得积分10
2秒前
Edou完成签到 ,获得积分10
2秒前
2275523154完成签到,获得积分10
3秒前
豆浆来点蒜泥完成签到,获得积分10
4秒前
简单完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助150
7秒前
nan完成签到,获得积分10
7秒前
Hh完成签到,获得积分10
9秒前
sun完成签到,获得积分10
13秒前
完美世界应助plateauman采纳,获得10
13秒前
嘟嘟豆806完成签到 ,获得积分10
13秒前
freeway完成签到,获得积分10
14秒前
辛勤谷雪完成签到,获得积分10
16秒前
清脆的秋寒完成签到,获得积分10
16秒前
傅家庆完成签到 ,获得积分10
16秒前
yziy完成签到 ,获得积分10
17秒前
现代大神完成签到,获得积分10
22秒前
zy完成签到 ,获得积分10
22秒前
komorebi完成签到 ,获得积分10
23秒前
量子星尘发布了新的文献求助10
23秒前
小龙完成签到 ,获得积分10
27秒前
29秒前
31秒前
aaaa完成签到 ,获得积分10
31秒前
梅特卡夫完成签到,获得积分10
34秒前
初见完成签到 ,获得积分10
40秒前
量子星尘发布了新的文献求助10
40秒前
忧虑的静柏完成签到 ,获得积分10
45秒前
drughunter009完成签到 ,获得积分10
46秒前
芙瑞完成签到 ,获得积分10
48秒前
dajiejie完成签到 ,获得积分10
48秒前
Jzhaoc580完成签到 ,获得积分10
50秒前
今后应助搞怪元彤采纳,获得10
51秒前
热心的冬菱完成签到 ,获得积分10
52秒前
linhuafeng完成签到,获得积分10
53秒前
闫栋完成签到 ,获得积分10
54秒前
aaatan完成签到 ,获得积分10
55秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5093339
求助须知:如何正确求助?哪些是违规求助? 4306976
关于积分的说明 13417433
捐赠科研通 4133171
什么是DOI,文献DOI怎么找? 2264356
邀请新用户注册赠送积分活动 1268004
关于科研通互助平台的介绍 1203813