人工智能
对比度(视觉)
分割
计算机视觉
图像分割
计算机科学
模式识别(心理学)
颜色对比度
彩色图像
图像处理
图像(数学)
作者
Yuzhen Lu,Sierra Young,Haifeng Wang,Nuwan K. Wijewardane
标识
DOI:10.1016/j.compag.2022.106711
摘要
• A contrast-optimization approach was proposed for plant segmentation of color images. • Contrast-enhanced images were compared with index images using five image datasets. • The proposed method consistently enhanced image contrast and segmentation accuracy. • None of nine common color indices were robust enough to varying image conditions. Plant segmentation is a crucial task in computer vision applications for identification/classification and quantification of plant phenotypic features. Robust segmentation of plants is challenged by a variety of factors such as unstructured background, variable illumination, biological variations, and weak plant-background contrast. Existing color indices that are empirically developed in specific applications may not adapt robustly to varying imaging conditions. This study proposes a new method for robust, automatic segmentation of plants from background in color (red-green-blue, RGB) images. This method consists of unconstrained optimization of a linear combination of RGB component images to enhance the contrast between plant and background regions, followed by automatic thresholding of the contrast-enhanced images ( CEI s). The validity of this method was demonstrated using five plant image datasets acquired under different field or indoor conditions, with a total of 329 color images as well as ground-truth plant masks. The CEI s along with 10 common index images were evaluated in terms of image contrast and plant segmentation accuracy. The CEI s, based on the maximized foreground-background separability, achieved consistent, substantial improvements in image contrast over the index images, with an average segmentation accuracy of F1 = 95%, which is 4% better than the best accuracy obtained by the indices. The index images were found sensitive to imaging conditions and none of them performed robustly across the datasets. The proposed method is straightforward, easy to implement and can be potentially extended to nonlinear forms of color component combinations or other color spaces and generally useful in plant image analysis for precision agriculture and plant phenotyping.
科研通智能强力驱动
Strongly Powered by AbleSci AI