Robust plant segmentation of color images based on image contrast optimization

人工智能 对比度(视觉) 分割 计算机视觉 图像分割 计算机科学 模式识别(心理学) 颜色对比度 彩色图像 图像处理 图像(数学)
作者
Yuzhen Lu,Sierra Young,Haifeng Wang,Nuwan K. Wijewardane
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:193: 106711-106711 被引量:24
标识
DOI:10.1016/j.compag.2022.106711
摘要

• A contrast-optimization approach was proposed for plant segmentation of color images. • Contrast-enhanced images were compared with index images using five image datasets. • The proposed method consistently enhanced image contrast and segmentation accuracy. • None of nine common color indices were robust enough to varying image conditions. Plant segmentation is a crucial task in computer vision applications for identification/classification and quantification of plant phenotypic features. Robust segmentation of plants is challenged by a variety of factors such as unstructured background, variable illumination, biological variations, and weak plant-background contrast. Existing color indices that are empirically developed in specific applications may not adapt robustly to varying imaging conditions. This study proposes a new method for robust, automatic segmentation of plants from background in color (red-green-blue, RGB) images. This method consists of unconstrained optimization of a linear combination of RGB component images to enhance the contrast between plant and background regions, followed by automatic thresholding of the contrast-enhanced images ( CEI s). The validity of this method was demonstrated using five plant image datasets acquired under different field or indoor conditions, with a total of 329 color images as well as ground-truth plant masks. The CEI s along with 10 common index images were evaluated in terms of image contrast and plant segmentation accuracy. The CEI s, based on the maximized foreground-background separability, achieved consistent, substantial improvements in image contrast over the index images, with an average segmentation accuracy of F1 = 95%, which is 4% better than the best accuracy obtained by the indices. The index images were found sensitive to imaging conditions and none of them performed robustly across the datasets. The proposed method is straightforward, easy to implement and can be potentially extended to nonlinear forms of color component combinations or other color spaces and generally useful in plant image analysis for precision agriculture and plant phenotyping.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
cc完成签到,获得积分10
刚刚
1秒前
奥观海发布了新的文献求助10
1秒前
1秒前
1秒前
gyl完成签到 ,获得积分10
2秒前
3秒前
kingwill应助沉静的飞雪采纳,获得20
3秒前
3秒前
朱婷完成签到 ,获得积分10
3秒前
尉迟如音发布了新的文献求助10
4秒前
坡坡大王完成签到,获得积分10
5秒前
upupup发布了新的文献求助30
5秒前
Lucky完成签到,获得积分10
5秒前
hhan完成签到 ,获得积分10
5秒前
6秒前
文竹薄荷发布了新的文献求助30
6秒前
热心的语堂完成签到,获得积分10
6秒前
Hello应助33采纳,获得10
6秒前
亚亚发布了新的文献求助10
6秒前
7秒前
ShinrayLee完成签到,获得积分10
7秒前
SYLH应助1101592875采纳,获得30
7秒前
7秒前
伍慕儿完成签到,获得积分10
8秒前
多情的初蓝完成签到,获得积分10
8秒前
pdf完成签到,获得积分10
8秒前
NexusExplorer应助www采纳,获得40
8秒前
闪闪雪糕完成签到,获得积分10
9秒前
我是老大应助porcelain采纳,获得10
9秒前
畅快一一发布了新的文献求助10
9秒前
微笑向日葵完成签到,获得积分10
10秒前
葡萄茶茶果完成签到,获得积分10
10秒前
勤奋静曼发布了新的文献求助10
10秒前
细水长流发布了新的文献求助10
11秒前
11秒前
11秒前
adjuster完成签到,获得积分10
12秒前
高分求助中
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Where and How Use PHEs 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3702336
求助须知:如何正确求助?哪些是违规求助? 3252249
关于积分的说明 9878392
捐赠科研通 2964282
什么是DOI,文献DOI怎么找? 1625586
邀请新用户注册赠送积分活动 770101
科研通“疑难数据库(出版商)”最低求助积分说明 742762