导线
材料科学
导电体
凝聚态物理
超导电性
有限元法
单层
双层
超导磁体
磁化
磁铁
磁场
电流密度
弯曲
工程物理
复合材料
电气工程
物理
纳米技术
热力学
工程类
生物
量子力学
遗传学
膜
作者
M. U. Fareed,Milan Kapolka,B. C. Robert,M. Clegg,H. S. Ruiz
标识
DOI:10.1109/tasc.2022.3145309
摘要
The Conductor on Rounded Core (CORC) cables manufactured by Advanced Conductor Technologies with current densities beyond 300 Amm^-2 at 4.2 K, and bending diameter of up to 3.5 cm, are considered as one of the strongest candidates for the next generation of high field power applications and magnets. In this paper, we present a full 3D FEM model for their monolayer and bilayer CORC cables made with up to three and six superconducting tapes respectively, disclosing the full curve of AC losses for the monolayer cable at magnetic fields beyond 60 mT, and the actual distribution of current density along and across the thickness of the superconducting tapes in both designs. The model is based on the so-called H-formulation, allowing to incorporate the true three-dimensionality of the tapes without recurring to 2D thin-film approaches where non-physical surface currents that do not follow the celebrated Bean's model for type-II superconductors appear. Likewise, good agreement with the experimentally measured AC-losses for the monolayer and bilayer cable have been obtained, with all the details of the model disclosed in this paper.
科研通智能强力驱动
Strongly Powered by AbleSci AI