Rapid Influence Maximization on Social Networks: The Positive Influence Dominating Set Problem

支配集 数学 多面体 组合数学 时间复杂性 最大化 图形 离散数学 集合(抽象数据类型) 斯坦纳树问题 节点(物理) 投影(关系代数) 指数函数 数学优化 算法 计算机科学 顶点(图论) 结构工程 工程类 数学分析 程序设计语言
作者
S. Raghavan,Rui Zhang
出处
期刊:Informs Journal on Computing 卷期号:34 (3): 1345-1365 被引量:4
标识
DOI:10.1287/ijoc.2021.1144
摘要

Motivated by applications arising on social networks, we study a generalization of the celebrated dominating set problem called the Positive Influence Dominating Set (PIDS). Given a graph G with a set V of nodes and a set E of edges, each node i in V has a weight b i , and a threshold requirement g i . We seek a minimum weight subset T of V, so that every node i not in T is adjacent to at least g i members of T. When g i is one for all nodes, we obtain the weighted dominating set problem. First, we propose a strong and compact extended formulation for the PIDS problem. We then project the extended formulation onto the space of the natural node-selection variables to obtain an equivalent formulation with an exponential number of valid inequalities. Restricting our attention to trees, we show that the extended formulation is the strongest possible formulation, and its projection (onto the space of the node variables) gives a complete description of the PIDS polytope on trees. We derive the necessary and sufficient facet-dening conditions for the valid inequalities in the projection and discuss their polynomial time separation. We embed this (exponential size) formulation in a branch-and-cut framework and conduct computational experiments using real-world graph instances, with up to approximately 2.5 million nodes and 8 million edges. On a test-bed of 100 real-world graph instances, our approach finds solutions that are on average 0.2% from optimality and solves 51 out of the 100 instances to optimality. Summary of Contribution: In influence maximization problems, a decision maker wants to target individuals strategically to cause a cascade at a minimum cost over a social network. These problems have attracted significant attention as their applications can be found in many different domains including epidemiology, healthcare, marketing, and politics. However, computationally solving large-scale influence maximization problems to near optimality remains a substantial challenge for the computing community, which thus represent significant opportunities for the development of operations-research based models, algorithms, and analysis in this interface. This paper studies the positive influence dominating set (PIDS) problem, an influence maximization problem on social networks that generalizes the celebrated dominating set problem. It focuses on developing exact methods for solving large instances to near optimality. In other words, the approach results in strong bounds, which then provide meaningful comparative benchmarks for heuristic approaches. The paper first shows that straightforward generalizations of well-known formulations for the dominating set problem do not yield strong (i.e., computationally viable) formulations for the PIDS problem. It then strengthens these formulations by proposing a compact extended formulation and derives its projection onto the space on the natural node-selection variables, resulting in two equivalent (stronger) formulations for the PIDS problem. The projected formulation on the natural node-variables contains a new class of valid inequalities that are shown to be facet-defining for the PIDS problem. These theoretical results are complemented by in-depth computational experiments using a branch-and-cut framework, on a testbed of 100 real-world graph instances, with up to approximately 2.5 million nodes and 8 million edges. They demonstrate the effectiveness of the proposed formulation in solving large scale problems finding solutions that are on average 0.2% from optimality and solving 51 of the 100 instances to optimality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小夜完成签到,获得积分10
刚刚
1秒前
Evan123完成签到,获得积分10
1秒前
1秒前
老八完成签到,获得积分10
1秒前
狗狗完成签到 ,获得积分10
2秒前
研友_gnvY5L发布了新的文献求助10
2秒前
wangyu完成签到 ,获得积分20
2秒前
ahh完成签到 ,获得积分10
3秒前
ZONG完成签到,获得积分10
3秒前
666阳阳666发布了新的文献求助10
4秒前
华东小可爱完成签到,获得积分10
4秒前
爱蕊咖完成签到 ,获得积分10
4秒前
ZHONK1NG发布了新的文献求助10
6秒前
陈琴完成签到,获得积分20
6秒前
刻苦惜霜完成签到,获得积分10
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
zho应助科研通管家采纳,获得10
9秒前
Ava应助科研通管家采纳,获得10
9秒前
英姑应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
iNk应助科研通管家采纳,获得10
9秒前
cdercder应助科研通管家采纳,获得10
9秒前
小二郎应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得30
9秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
cdercder应助科研通管家采纳,获得10
9秒前
刘66完成签到,获得积分10
11秒前
Alina1874完成签到,获得积分10
11秒前
Yolo完成签到,获得积分10
12秒前
12秒前
一味愚完成签到,获得积分10
17秒前
轻松凡英完成签到,获得积分10
19秒前
安诺完成签到,获得积分10
19秒前
施柔完成签到,获得积分10
20秒前
负责的寒梅完成签到 ,获得积分10
20秒前
XY发布了新的文献求助10
21秒前
张afsbdtw完成签到,获得积分10
21秒前
21秒前
ikun0000完成签到,获得积分10
22秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736779
求助须知:如何正确求助?哪些是违规求助? 3280685
关于积分的说明 10020554
捐赠科研通 2997414
什么是DOI,文献DOI怎么找? 1644533
邀请新用户注册赠送积分活动 782083
科研通“疑难数据库(出版商)”最低求助积分说明 749668