DI-Unet: Dimensional interaction self-attention for medical image segmentation

计算机科学 分割 人工智能 图像分割 模式识别(心理学) 感受野 计算机视觉 尺度空间分割 变压器 量子力学 物理 电压
作者
Yanlin Wu,Guanglei Wang,Zhongyang Wang,Hongrui Wang,Yan Li
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:78: 103896-103896 被引量:22
标识
DOI:10.1016/j.bspc.2022.103896
摘要

In recent years, Unet network based on convolution has become a general structure for medical image segmentation tasks. However, it cannot effectively model the long-distance dependence between features due to the limitation of the receptive field. The successful application of Transformer in computer vision solves the problem of the limited receptive field of neural networks. However, the computational complexity limits its further application in medical image segmentation. In addition, the self attention mechanism in Transformer only explores the spatial dimension relationship of the feature maps, and lacks the interaction with the channel dimension, which limits the performance improvement of the network. Here, we proposes DI-Unet, which develops Dimensional Interactive (DI) self-attention for effective feature extraction processing. When inputting high - resolution images, it can effectively reduce the amount of model calculations and capture cross-dimensional information before calculating attention weights. The overwhelming superiority of DI-Unet is demonstrated by extensive experiments in multiple databases. In large datasets, the proposed method outperforms other methods in segmentation tasks. The study provides a research foundation and important reference value for the research and application of Transformer structure in medical image segmentation tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
1秒前
所所应助橘子有点酸采纳,获得30
1秒前
1秒前
1秒前
eileen完成签到 ,获得积分10
1秒前
打打应助权_888采纳,获得10
1秒前
无尽夏发布了新的文献求助10
1秒前
幺幺发布了新的文献求助10
2秒前
2秒前
bioli应助LGH采纳,获得10
3秒前
lijiaying0420发布了新的文献求助10
3秒前
lansing完成签到 ,获得积分10
3秒前
4秒前
95发布了新的文献求助10
4秒前
小情绪应助老实的百招采纳,获得10
4秒前
4秒前
4秒前
兴奋的曲奇完成签到,获得积分10
4秒前
科研小菜鸡完成签到,获得积分20
5秒前
旷野发布了新的文献求助10
5秒前
5秒前
5秒前
小苏苏完成签到,获得积分10
5秒前
科研副本完成签到,获得积分10
6秒前
科研通AI5应助SSR采纳,获得10
6秒前
安寒发布了新的文献求助10
6秒前
WZQ发布了新的文献求助10
7秒前
gsd发布了新的文献求助20
7秒前
7秒前
zhhhhh完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
NexusExplorer应助神勇的白竹采纳,获得10
8秒前
丘比特应助阿龙采纳,获得10
8秒前
刘春林完成签到,获得积分10
8秒前
8秒前
金子俊关注了科研通微信公众号
8秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Wolbachia-mediated fitness enhancement and reproductive manipulation in the South American tomato pinworm, Tuta absoluta 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5098963
求助须知:如何正确求助?哪些是违规求助? 4311031
关于积分的说明 13433121
捐赠科研通 4138388
什么是DOI,文献DOI怎么找? 2267214
邀请新用户注册赠送积分活动 1270282
关于科研通互助平台的介绍 1206556