DI-Unet: Dimensional interaction self-attention for medical image segmentation

计算机科学 分割 人工智能 图像分割 模式识别(心理学) 感受野 计算机视觉 尺度空间分割 变压器 物理 电压 量子力学
作者
Yanlin Wu,Guanglei Wang,Zhongyang Wang,Hongrui Wang,Yan Li
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:78: 103896-103896 被引量:22
标识
DOI:10.1016/j.bspc.2022.103896
摘要

In recent years, Unet network based on convolution has become a general structure for medical image segmentation tasks. However, it cannot effectively model the long-distance dependence between features due to the limitation of the receptive field. The successful application of Transformer in computer vision solves the problem of the limited receptive field of neural networks. However, the computational complexity limits its further application in medical image segmentation. In addition, the self attention mechanism in Transformer only explores the spatial dimension relationship of the feature maps, and lacks the interaction with the channel dimension, which limits the performance improvement of the network. Here, we proposes DI-Unet, which develops Dimensional Interactive (DI) self-attention for effective feature extraction processing. When inputting high - resolution images, it can effectively reduce the amount of model calculations and capture cross-dimensional information before calculating attention weights. The overwhelming superiority of DI-Unet is demonstrated by extensive experiments in multiple databases. In large datasets, the proposed method outperforms other methods in segmentation tasks. The study provides a research foundation and important reference value for the research and application of Transformer structure in medical image segmentation tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
SYLH应助Master_Ye采纳,获得10
1秒前
VirSnorlax完成签到,获得积分10
1秒前
杳鸢应助zhanhunliu采纳,获得10
1秒前
扳迪发布了新的文献求助30
2秒前
平淡的百招完成签到,获得积分10
2秒前
3秒前
3秒前
4秒前
4秒前
sunzhuxi发布了新的文献求助10
4秒前
情怀应助贝贝采纳,获得10
5秒前
轻舞飞扬关注了科研通微信公众号
5秒前
跨越山海的热爱完成签到 ,获得积分10
6秒前
司徒不正应助开心的含雁采纳,获得10
6秒前
聪慧芷巧应助开心的含雁采纳,获得10
6秒前
小恐龙飞飞完成签到 ,获得积分10
6秒前
7秒前
7秒前
呆萌的小海豚完成签到,获得积分10
7秒前
CYH完成签到,获得积分10
8秒前
灵巧水绿应助re采纳,获得10
8秒前
无花果应助lulu采纳,获得10
8秒前
扳迪完成签到,获得积分10
8秒前
夏梦园发布了新的文献求助10
9秒前
9秒前
草莓灰灰完成签到,获得积分20
9秒前
复杂的可乐完成签到 ,获得积分10
9秒前
结实红酒发布了新的文献求助10
9秒前
sunzhuxi完成签到,获得积分10
10秒前
10秒前
慕青应助迅速向日葵采纳,获得10
10秒前
11秒前
彩色岂愈发布了新的文献求助30
12秒前
pickle完成签到,获得积分10
12秒前
Nic完成签到,获得积分10
13秒前
rockli发布了新的文献求助10
13秒前
13秒前
Milo完成签到,获得积分10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950931
求助须知:如何正确求助?哪些是违规求助? 3496322
关于积分的说明 11081419
捐赠科研通 3226783
什么是DOI,文献DOI怎么找? 1783983
邀请新用户注册赠送积分活动 868029
科研通“疑难数据库(出版商)”最低求助积分说明 800993