Oxygen vacancy-induced hydroxyl dipole reorientation in hydroxyapatite for enhanced piezocatalytic activity

氧气 材料科学 空位缺陷 偶极子 化学工程 凝聚态物理 化学 有机化学 物理 工程类
作者
Ye Miao,Wenrou Tian,Jun Han,Najun Li,Dongyun Chen,Qingfeng Xu,Jianmei Lu
出处
期刊:Nano Energy [Elsevier]
卷期号:100: 107473-107473 被引量:44
标识
DOI:10.1016/j.nanoen.2022.107473
摘要

A new method to boost the piezocatalytic activity of hydroxyapatite (HAP) is proposed that oxygen vacancies were introduced to align the orientation of hydroxyl dipoles in parallel. A series of hydroxyapatites with different contents of oxygen vacancy were synthesized by hydrothermal method and high-temperature calcination. Among them, hydroxyapatite with a moderate oxygen-vacancy concentration (OVHAP-2 h) exhibited an excellent piezocatalytic removal efficiency of 98.43% for bisphenol A (BPA) within 12 min, and its degradation kinetic rate constant was almost 4 times that of pristine HAP. This could be ascribed to the introduction of oxygen vacancies which induce the transformation in the orientation of hydroxyl dipoles from disorderly to parallel. Finally, the possible piezocatalytic mechanism of OVHAP is proposed based on the free radical trapping experiments. This work provides a novel strategy for improving the piezocatalytic performance of HAP, and expands its application in environmental remediation by harvesting mechanical energy. Hydroxyapatite with moderate oxygen vacancies is of excellent piezoelectric properties for the unique function of oxygen vacancies inducing the transformation during the alignment of hydroxyl dipoles from disorderly to parallel. • Hydroxyapatites with different oxygen vacancy concentrations were synthesized. • The introduction of oxygen vacancies induced the hydroxyl dipole reorientation in HAP. • Hydroxyapatite with moderate oxygen vacancy concentrations exhibits enhanced piezocatalysis. • The possible piezocatalytic mechanism of OVHAP is proposed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
桐桐应助荞麦面采纳,获得10
2秒前
懒得起名完成签到,获得积分10
4秒前
4秒前
4秒前
谦让月饼完成签到 ,获得积分10
6秒前
8秒前
8秒前
8秒前
9秒前
10秒前
天天快乐应助LLL采纳,获得10
12秒前
打打应助飞羽采纳,获得10
13秒前
荞麦面发布了新的文献求助10
14秒前
00完成签到,获得积分10
15秒前
15秒前
阳光怀亦发布了新的文献求助10
16秒前
lsq108发布了新的文献求助10
20秒前
华仔应助等待的乐儿采纳,获得10
20秒前
阳光怀亦完成签到,获得积分10
22秒前
zhendou应助cgk采纳,获得10
25秒前
25秒前
aannnn发布了新的文献求助10
25秒前
27秒前
英俊的铭应助夜半微风采纳,获得10
27秒前
28秒前
28秒前
隐形曼青应助飞羽采纳,获得10
28秒前
快乐映秋完成签到,获得积分10
28秒前
余海川发布了新的文献求助10
29秒前
juejue333完成签到,获得积分10
29秒前
受伤金鑫发布了新的文献求助10
29秒前
31秒前
sunshine发布了新的文献求助10
31秒前
xumengsuo发布了新的文献求助10
31秒前
秘书发布了新的文献求助10
32秒前
BIUBIU发布了新的文献求助20
34秒前
善学以致用应助大胆浩然采纳,获得10
35秒前
小严发布了新的文献求助10
35秒前
塔塔饼完成签到,获得积分10
37秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459066
求助须知:如何正确求助?哪些是违规求助? 3053650
关于积分的说明 9037605
捐赠科研通 2742924
什么是DOI,文献DOI怎么找? 1504562
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694589