Myeloid-derived growth factor deficiency exacerbates mitotic catastrophe of podocytes in glomerular disease

足细胞 肾小球硬化 生物 局灶节段性肾小球硬化 肾脏疾病 有丝分裂 核分裂突变 内科学 内分泌学 癌症研究 细胞生物学 医学 肾小球肾炎 细胞周期 蛋白尿 细胞 遗传学
作者
Ping Zhan,Yang Zhang,Weichen Shi,Xiaohan Liu,Zhe Qiao,Ziying Wang,Xiaojie Wang,Jichao Wu,Wei Tang,Yu Sun,Yan Zhang,Junhui Zhen,Jin Shang,Min Liu,Fan Yi
出处
期刊:Kidney International [Elsevier]
卷期号:102 (3): 546-559 被引量:40
标识
DOI:10.1016/j.kint.2022.04.027
摘要

Podocytes are unique, highly specialized, terminally differentiated cells, which are restricted in a post-mitotic state with limited ability to repair or regenerate. Re-entering the mitotic phase causes podocyte mitotic catastrophe, thereby leading to podocyte death and glomerular injury. Myeloid-derived growth factor (MYDGF) is a novel secreted protein and plays an important role in the regulation of cardiovascular function. However, whether MYDGF is expressed in kidney parenchymal cells and whether it has biological functions in the kidney remain unknown. Here, we found that MYDGF was expressed in kidney parenchymal cells and was significantly reduced in podocytes from mice with models of focal segmental glomerulosclerosis and diabetic kidney disease. Podocyte-specific deletion of Mydgf in mice exacerbated podocyte injury and proteinuria in both disease models. Functionally, MYDGF protected podocytes against mitotic catastrophe by reducing accumulation of podocytes in the S phase, a portion of the cell cycle in which DNA is replicated. Mechanistically, MYDGF regulates the expression of the transcription factor RUNX2 which mediates some MYDGF effects. Importantly, a significant reduction of MYDGF was found in glomeruli from patients with glomerular disease due to focal segmental glomerulosclerosis and diabetic kidney disease and the level of MYDGF was correlated with glomerular filtration rate, serum creatinine and podocyte loss. Thus, our studies indicate that MYDGF may be an attractive therapeutic target for glomerular disease. Podocytes are unique, highly specialized, terminally differentiated cells, which are restricted in a post-mitotic state with limited ability to repair or regenerate. Re-entering the mitotic phase causes podocyte mitotic catastrophe, thereby leading to podocyte death and glomerular injury. Myeloid-derived growth factor (MYDGF) is a novel secreted protein and plays an important role in the regulation of cardiovascular function. However, whether MYDGF is expressed in kidney parenchymal cells and whether it has biological functions in the kidney remain unknown. Here, we found that MYDGF was expressed in kidney parenchymal cells and was significantly reduced in podocytes from mice with models of focal segmental glomerulosclerosis and diabetic kidney disease. Podocyte-specific deletion of Mydgf in mice exacerbated podocyte injury and proteinuria in both disease models. Functionally, MYDGF protected podocytes against mitotic catastrophe by reducing accumulation of podocytes in the S phase, a portion of the cell cycle in which DNA is replicated. Mechanistically, MYDGF regulates the expression of the transcription factor RUNX2 which mediates some MYDGF effects. Importantly, a significant reduction of MYDGF was found in glomeruli from patients with glomerular disease due to focal segmental glomerulosclerosis and diabetic kidney disease and the level of MYDGF was correlated with glomerular filtration rate, serum creatinine and podocyte loss. Thus, our studies indicate that MYDGF may be an attractive therapeutic target for glomerular disease. In This IssueKidney InternationalVol. 102Issue 3PreviewGorski et al. meta-analyzed genome-wide association studies that covered 343,339 individuals to uncover top-priority genes responsible for progressive decline in estimated glomerular filtration rate (eGFR). This analysis identified 12 variants across 11 loci significant for annual decline in eGFR, and 9 variants that were important in analyses adjusted or unadjusted for baseline glomerular filtration rate. The effects of these variants were magnified 2- to 4-fold in patients with diabetes or chronic kidney disease (CKD) at baseline. Full-Text PDF
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jixiekaifa完成签到 ,获得积分10
1秒前
2秒前
失眠魔镜发布了新的文献求助10
3秒前
PG发布了新的文献求助10
5秒前
zhonglv7应助值雨采纳,获得10
6秒前
seun发布了新的文献求助10
6秒前
科研通AI6应助yyy采纳,获得10
7秒前
内向的羊青完成签到,获得积分10
7秒前
8秒前
CodeCraft应助zhouleiwang采纳,获得10
9秒前
10秒前
10秒前
忧伤的宝马完成签到,获得积分10
11秒前
LJJ发布了新的文献求助10
11秒前
和谐的芷天完成签到,获得积分10
12秒前
xionggege完成签到,获得积分10
13秒前
15秒前
值雨完成签到,获得积分10
16秒前
星辰大海应助管难破采纳,获得10
17秒前
WuYiHHH完成签到,获得积分10
17秒前
王仁完成签到,获得积分10
17秒前
18秒前
20秒前
20秒前
20秒前
JamesPei应助迅速如柏采纳,获得10
23秒前
23秒前
伊叶之丘完成签到 ,获得积分10
24秒前
小鱼儿发布了新的文献求助10
24秒前
PG完成签到,获得积分20
25秒前
25秒前
科研笑川发布了新的文献求助10
25秒前
seun完成签到,获得积分10
26秒前
26秒前
健壮不斜完成签到 ,获得积分10
26秒前
aa完成签到,获得积分10
28秒前
华仔应助zhu采纳,获得30
28秒前
zhuang完成签到,获得积分10
28秒前
29秒前
小马甲应助科研笑川采纳,获得10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560070
求助须知:如何正确求助?哪些是违规求助? 4645240
关于积分的说明 14674548
捐赠科研通 4586369
什么是DOI,文献DOI怎么找? 2516380
邀请新用户注册赠送积分活动 1490038
关于科研通互助平台的介绍 1460866