Development of the support vector regression–particle swarm optimization simulation‐optimization model for the assessment of a novel groundwater quality index

粒子群优化 地下水 含水层 水质 环境科学 地下水补给 统计 环境工程 水文学(农业) 计算机科学 数学 工程类 机器学习 岩土工程 生态学 生物
作者
Saeed Mozaffari,Saman Javadi,Hamid Kardan Moghaddam,Timothy O. Randhir
出处
期刊:Water and Environment Journal [Wiley]
卷期号:36 (4): 608-621 被引量:1
标识
DOI:10.1111/wej.12801
摘要

Abstract The assessment and prediction of the groundwater resource quality are required for the sustainable management of this crucial resource. This study develops a new index for assessing and a model for predicting the quality of groundwater resources. The groundwater quality index (GWQI), the Shannon entropy method, was used to determine the weight of parameters, and the complex proportional assessment multi‐decision criteria method was used to score the GWQI. Water quality parameters, including TDS, EC, TH, , , , pH, , , and , were used as decision criteria. The support vector regression–particle swarm optimization )SVR‐PSO( simulation–optimization model is developed to predict new GWQI (C‐GWQI) of the aquifer. The development of this new index called C‐GWQI is one of the innovations of this article. Based on these approaches, the index is used to determine three water quality classes (optimum, permissible, and impermissible) for drinking water following World Health Organization (WHO) criteria. The distribution of C‐GWQI shows that groundwater quality in most of the Zanjan aquifer of Iran was in the optimum range. Still, it is deteriorating into the permissible range due to pollution from urban areas during some periods. The hybrid SVR‐PSO model can predict the groundwater quality with sufficient accuracy with a Mean Absolute Relative Error (MARE) of 1.5% and 0.88% in training and testing phases, respectively. Results show that temperature, precipitation, evaporation, returned water and groundwater level did not significantly affect groundwater quality prediction. In contrast, the previous month's C‐GWQI, recharge, and discharge were most influential in predicting groundwater quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小小雨天发布了新的文献求助10
3秒前
斯文败类应助欢乐谷采纳,获得10
3秒前
小二郎应助资白玉采纳,获得10
4秒前
5秒前
wwl发布了新的文献求助10
6秒前
科研通AI5应助柯千风采纳,获得10
6秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
小二郎应助科研通管家采纳,获得10
7秒前
7秒前
科目三应助科研通管家采纳,获得10
7秒前
DAI应助科研通管家采纳,获得10
7秒前
典雅问寒应助科研通管家采纳,获得10
7秒前
慕青应助科研通管家采纳,获得10
7秒前
Andy1201应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
7秒前
SYLH应助科研通管家采纳,获得10
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
SYLH应助科研通管家采纳,获得10
7秒前
上官若男应助科研通管家采纳,获得10
7秒前
SYLH应助科研通管家采纳,获得10
8秒前
SYLH应助科研通管家采纳,获得10
8秒前
8秒前
wanci应助科研通管家采纳,获得30
8秒前
典雅问寒应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
SYLH应助科研通管家采纳,获得10
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
bkagyin应助科研通管家采纳,获得10
8秒前
SYLH应助科研通管家采纳,获得10
8秒前
8秒前
kkkl完成签到,获得积分10
9秒前
9秒前
10秒前
江蓠虽晚完成签到 ,获得积分10
10秒前
11秒前
静静优柔完成签到,获得积分10
13秒前
14秒前
东郭寄灵发布了新的文献求助10
14秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738850
求助须知:如何正确求助?哪些是违规求助? 3282273
关于积分的说明 10028265
捐赠科研通 2998982
什么是DOI,文献DOI怎么找? 1645682
邀请新用户注册赠送积分活动 782882
科研通“疑难数据库(出版商)”最低求助积分说明 750067