Detection and classification of pipe defects based on pipe-extended feature pyramid network

棱锥(几何) 特征(语言学) 管道(软件) 计算机视觉 人工智能 采样(信号处理) 卷积神经网络 模式识别(心理学) 特征提取 计算机科学 瓶颈 边缘检测 目标检测 图像(数学) 图像处理 数学 几何学 嵌入式系统 哲学 滤波器(信号处理) 程序设计语言 语言学
作者
Wenhao Guo,Xing Zhang,Dejin Zhang,Zhipeng Chen,Baoding Zhou,Dingfa Huang,Qingquan Li
出处
期刊:Automation in Construction [Elsevier]
卷期号:141: 104399-104399 被引量:6
标识
DOI:10.1016/j.autcon.2022.104399
摘要

In image-based pipe defect detection research, the effective utilization of the information in the two-dimension (2D) image is directly related to the sampling of the image. The existing inspection methods do not analyze the pipeline imaging but rather directly use the object detection method for defect detection, resulting in a bottleneck problem for the accuracy. In this study, the pipeline imaging was analyzed. It was found that effective sampling of the defect texture within the edge region of the image could improve defect detection accuracy. An image sampling framework, pipe-extended feature pyramid network (P-EFPN), was constructed, and the super-resolution (SR) module was embedded for texture extraction to obtain rich defect texture information and provide image sampling support for pipe defect detection. The defect dataset contains deformation, corrosion, and crack. In the faster region-convolutional neural network (R-CNN) model with Resnet-101 as the backbone, the mean average precision (mAP) of the P-EFPN model was improved by 8.64% compared to the state-of-the-art feature pyramid network (FPN) model. The proposed method improves the accuracy of defect detection by capturing more textures in the edge regions of the image. Compared with existing image sampling methods, the proposed sampling method is more suitable for pipe defect detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助小新采纳,获得10
1秒前
今后应助科研通管家采纳,获得10
1秒前
zlszxy完成签到,获得积分10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
JamesPei应助SC234采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
隐形曼青应助王小小采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
2秒前
动听千风发布了新的文献求助30
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
Jara发布了新的文献求助30
2秒前
2秒前
2秒前
小青椒应助科研通管家采纳,获得150
3秒前
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
3秒前
玉米侠完成签到 ,获得积分10
3秒前
烟花应助科研通管家采纳,获得10
3秒前
Hello应助渐变映射采纳,获得10
3秒前
3秒前
今后应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
3秒前
Hello应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
Lny应助科研通管家采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784063
求助须知:如何正确求助?哪些是违规求助? 5680443
关于积分的说明 15462954
捐赠科研通 4913367
什么是DOI,文献DOI怎么找? 2644620
邀请新用户注册赠送积分活动 1592452
关于科研通互助平台的介绍 1547078