估计员
分解
计量经济学
回归
贫穷
估计
统计
加性模型
人口
数学
样品(材料)
回归分析
经济
生物
人口学
化学
经济增长
社会学
生态学
管理
色谱法
作者
Tomson Ogwang,Jean François Lamarche
标识
DOI:10.1080/13504851.2022.2094320
摘要
We propose a new regression-based approach to the estimation and additive decomposition of the Foster-Greer-Thorbecke (FGT) poverty measures. Unlike the original additive decomposition for which subgroup population shares are used as weights, the new additive decomposition uses subgroup poor population shares as weights. Our simulation results reveal low biases of the regression-based estimators of the FGT poverty measures even for moderate sample sizes.
科研通智能强力驱动
Strongly Powered by AbleSci AI