Prediction of milk protein content based on improved sparrow search algorithm and optimized back propagation neural network

高光谱成像 反向传播 人工神经网络 平滑的 算法 模式识别(心理学) 梯度下降 人工智能 人口 计算机科学 计算机视觉 社会学 人口学
作者
Jiangping Liu,Pengwei Hu,Heru Xue,Xin Pan,Chen Chen
出处
期刊:Spectroscopy Letters [Informa]
卷期号:55 (4): 229-239 被引量:12
标识
DOI:10.1080/00387010.2022.2051556
摘要

The quality of milk is largely determined by the protein content. The feasibility of predicting the protein content of milk by hyperspectral image has attracted more attentions from researchers for minor detection cost and high efficiency. In this paper, a prediction modeling method based on improved sparrow search algorithm (SSA) and optimized back propagation (BP) neural network is proposed, in which sine chaotic map is introduced to initialize the population position to improve the optimization performance of SSA. In the experiment, hyperspectral images of each kind of milk were collected by visible/near infrared hyperspectral imaging system to acquire hyperspectral data, then the spectral data were pretreated by Savitzky–Golay smoothing, and the competitive adaptive reweighted sampling combined with successive projections algorithm to select 13 characteristic bands. Subsequently, the spectral data corresponding to the characteristic bands are used as the input of back propagation neural network, optimized by the improved sparrow search algorithm for the initial weight and threshold of BP neural network, to establish three prediction models(BP model, the BP model based on SSA optimization and the BP model based on improved SSA optimization).Experimental results demonstrate that the BP model based on improved SSA optimization has better fitting ability and higher prediction accuracy for milk protein content. This research provides algorithm support and theoretical basis for the rapid nondestructive detection of milk protein content based on BP neural network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
taku完成签到 ,获得积分10
刚刚
科研通AI6应助liuhs采纳,获得10
1秒前
浮游应助爱听歌颦采纳,获得10
1秒前
哈哈完成签到,获得积分20
2秒前
3秒前
烂漫的弘文完成签到,获得积分10
4秒前
一只特立独行的朱完成签到,获得积分10
7秒前
大胆妙竹完成签到 ,获得积分10
8秒前
lll完成签到,获得积分10
8秒前
bibibi完成签到,获得积分10
8秒前
大饼哥完成签到,获得积分10
9秒前
小绵羊完成签到,获得积分20
10秒前
周晓完成签到,获得积分20
10秒前
哆啦A梦完成签到,获得积分10
15秒前
简单的晓博完成签到,获得积分10
15秒前
细心奇异果完成签到,获得积分10
15秒前
你笑的样子真好看完成签到,获得积分10
16秒前
WLL给WLL的求助进行了留言
17秒前
乐风完成签到,获得积分10
18秒前
追风者完成签到,获得积分10
18秒前
追梦人2016完成签到 ,获得积分10
21秒前
丰富的谷菱完成签到,获得积分10
21秒前
义气芷荷完成签到,获得积分10
21秒前
权_888完成签到 ,获得积分10
22秒前
SppikeFPS完成签到,获得积分10
23秒前
wenxian完成签到,获得积分10
23秒前
插线板完成签到 ,获得积分10
24秒前
呆头鹅完成签到 ,获得积分10
29秒前
熠直在发光给熠直在发光的求助进行了留言
31秒前
11完成签到 ,获得积分10
31秒前
31秒前
迷恋你的微笑完成签到,获得积分10
32秒前
ding应助physicalproblem采纳,获得50
33秒前
爆米花应助like采纳,获得10
35秒前
创不可贴给创不可贴的求助进行了留言
35秒前
真实的豆芽完成签到,获得积分10
36秒前
ningmeng完成签到,获得积分10
37秒前
勤劳的盼山给勤劳的盼山的求助进行了留言
37秒前
张硕论完成签到,获得积分10
37秒前
木香完成签到,获得积分10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5465567
求助须知:如何正确求助?哪些是违规求助? 4569829
关于积分的说明 14321219
捐赠科研通 4496303
什么是DOI,文献DOI怎么找? 2463217
邀请新用户注册赠送积分活动 1452179
关于科研通互助平台的介绍 1427369