Prediction of milk protein content based on improved sparrow search algorithm and optimized back propagation neural network

高光谱成像 反向传播 人工神经网络 平滑的 算法 模式识别(心理学) 梯度下降 人工智能 人口 计算机科学 计算机视觉 人口学 社会学
作者
Jiangping Liu,Pengwei Hu,Heru Xue,Xuebiao Pan,Chen Chen
出处
期刊:Spectroscopy Letters [Informa]
卷期号:55 (4): 229-239 被引量:7
标识
DOI:10.1080/00387010.2022.2051556
摘要

The quality of milk is largely determined by the protein content. The feasibility of predicting the protein content of milk by hyperspectral image has attracted more attentions from researchers for minor detection cost and high efficiency. In this paper, a prediction modeling method based on improved sparrow search algorithm (SSA) and optimized back propagation (BP) neural network is proposed, in which sine chaotic map is introduced to initialize the population position to improve the optimization performance of SSA. In the experiment, hyperspectral images of each kind of milk were collected by visible/near infrared hyperspectral imaging system to acquire hyperspectral data, then the spectral data were pretreated by Savitzky–Golay smoothing, and the competitive adaptive reweighted sampling combined with successive projections algorithm to select 13 characteristic bands. Subsequently, the spectral data corresponding to the characteristic bands are used as the input of back propagation neural network, optimized by the improved sparrow search algorithm for the initial weight and threshold of BP neural network, to establish three prediction models(BP model, the BP model based on SSA optimization and the BP model based on improved SSA optimization).Experimental results demonstrate that the BP model based on improved SSA optimization has better fitting ability and higher prediction accuracy for milk protein content. This research provides algorithm support and theoretical basis for the rapid nondestructive detection of milk protein content based on BP neural network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Miracle完成签到,获得积分10
刚刚
柏忆南完成签到 ,获得积分10
刚刚
1秒前
王成健完成签到,获得积分10
2秒前
wanci应助Talha采纳,获得10
2秒前
2秒前
冲天小猪完成签到,获得积分10
3秒前
不戴眼镜的眼镜王蛇完成签到,获得积分10
3秒前
超级学习大王完成签到,获得积分10
3秒前
hhh完成签到,获得积分10
4秒前
Ava应助怡然尔芙采纳,获得10
4秒前
Hshi发布了新的文献求助10
4秒前
廿七完成签到,获得积分10
5秒前
领导范儿应助Z160采纳,获得10
5秒前
5秒前
fxh完成签到,获得积分10
6秒前
6秒前
lzx完成签到 ,获得积分10
6秒前
张起灵完成签到,获得积分10
6秒前
单薄不惜完成签到,获得积分10
6秒前
有志青年完成签到,获得积分10
7秒前
7秒前
爱笑的蘑菇完成签到,获得积分10
7秒前
8秒前
隐形曼青应助迪迦采纳,获得10
9秒前
芹123发布了新的文献求助10
9秒前
白石杏完成签到,获得积分10
9秒前
一人一般完成签到,获得积分10
9秒前
半芹发布了新的文献求助10
9秒前
吭哧吭哧完成签到,获得积分10
9秒前
munire发布了新的文献求助10
10秒前
10秒前
Talha完成签到,获得积分10
10秒前
zt发布了新的文献求助10
11秒前
ss完成签到 ,获得积分10
11秒前
Spark完成签到,获得积分10
11秒前
hsy发布了新的文献求助10
13秒前
方文杰完成签到,获得积分10
13秒前
floraaa发布了新的文献求助10
13秒前
15秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151225
求助须知:如何正确求助?哪些是违规求助? 2802672
关于积分的说明 7849833
捐赠科研通 2460115
什么是DOI,文献DOI怎么找? 1309560
科研通“疑难数据库(出版商)”最低求助积分说明 628956
版权声明 601760