Prediction of milk protein content based on improved sparrow search algorithm and optimized back propagation neural network

高光谱成像 反向传播 人工神经网络 平滑的 算法 模式识别(心理学) 梯度下降 人工智能 人口 计算机科学 计算机视觉 人口学 社会学
作者
Jiangping Liu,Pengwei Hu,Heru Xue,Xuebiao Pan,Chen Chen
出处
期刊:Spectroscopy Letters [Informa]
卷期号:55 (4): 229-239 被引量:7
标识
DOI:10.1080/00387010.2022.2051556
摘要

The quality of milk is largely determined by the protein content. The feasibility of predicting the protein content of milk by hyperspectral image has attracted more attentions from researchers for minor detection cost and high efficiency. In this paper, a prediction modeling method based on improved sparrow search algorithm (SSA) and optimized back propagation (BP) neural network is proposed, in which sine chaotic map is introduced to initialize the population position to improve the optimization performance of SSA. In the experiment, hyperspectral images of each kind of milk were collected by visible/near infrared hyperspectral imaging system to acquire hyperspectral data, then the spectral data were pretreated by Savitzky–Golay smoothing, and the competitive adaptive reweighted sampling combined with successive projections algorithm to select 13 characteristic bands. Subsequently, the spectral data corresponding to the characteristic bands are used as the input of back propagation neural network, optimized by the improved sparrow search algorithm for the initial weight and threshold of BP neural network, to establish three prediction models(BP model, the BP model based on SSA optimization and the BP model based on improved SSA optimization).Experimental results demonstrate that the BP model based on improved SSA optimization has better fitting ability and higher prediction accuracy for milk protein content. This research provides algorithm support and theoretical basis for the rapid nondestructive detection of milk protein content based on BP neural network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
w17638619025完成签到 ,获得积分20
2秒前
撒上咖啡应助科研通管家采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
3秒前
菠萝吹雪应助科研通管家采纳,获得30
3秒前
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
李爱国应助科研通管家采纳,获得10
3秒前
3秒前
西内!卡Q因完成签到,获得积分10
4秒前
我是125应助www采纳,获得10
4秒前
小二郎应助鲜艳的棒棒糖采纳,获得10
4秒前
Zzzzzzzzzzz发布了新的文献求助10
4秒前
长情若魔发布了新的文献求助10
4秒前
酷酷酷完成签到,获得积分10
5秒前
5秒前
BaekHyun发布了新的文献求助10
6秒前
xuex1发布了新的文献求助10
6秒前
孙皓然完成签到 ,获得积分10
7秒前
9秒前
9秒前
11秒前
逐风给逐风的求助进行了留言
12秒前
科研通AI5应助灌饼采纳,获得30
12秒前
Owen应助Zzzzzzzzzzz采纳,获得10
13秒前
14秒前
15秒前
巫马秋寒应助笑点低可乐采纳,获得10
15秒前
xuex1完成签到,获得积分10
15秒前
情怀应助阳光的雁山采纳,获得10
17秒前
斯文败类应助jy采纳,获得10
17秒前
17秒前
日月轮回发布了新的文献求助10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808