Intratumoral Resolution of Driver Gene Mutation Heterogeneity in Renal Cancer Using Deep Learning

BAP1型 肾透明细胞癌 组织微阵列 遗传异质性 肾细胞癌 癌症 肾癌 肿瘤异质性 突变 癌症研究 肿瘤科 病理 计算生物学 生物 医学 内科学 基因 遗传学 表型
作者
Paul H. Acosta,Vandana Panwar,Vipul Jarmale,Alana Christie,Jay Jasti,Vitaly Margulis,Dinesh Rakheja,John C. Cheville,Bradley C. Leibovich,Alexander S. Parker,James Brugarolas,Payal Kapur,Satwik Rajaram
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:82 (15): 2792-2806 被引量:19
标识
DOI:10.1158/0008-5472.can-21-2318
摘要

Intratumoral heterogeneity arising from tumor evolution poses significant challenges biologically and clinically. Dissecting this complexity may benefit from deep learning (DL) algorithms, which can infer molecular features from ubiquitous hematoxylin and eosin (H&E)-stained tissue sections. Although DL algorithms have been developed to predict some driver mutations from H&E images, the ability of these DL algorithms to resolve intratumoral mutation heterogeneity at subclonal spatial resolution is unexplored. Here, we apply DL to a paradigm of intratumoral heterogeneity, clear cell renal cell carcinoma (ccRCC), the most common type of kidney cancer. Matched IHC and H&E images were leveraged to develop DL models for predicting intratumoral genetic heterogeneity of the three most frequently mutated ccRCC genes, BAP1, PBRM1, and SETD2. DL models were generated on a large cohort (N = 1,282) and tested on several independent cohorts, including a TCGA cohort (N = 363 patients) and two tissue microarray (TMA) cohorts (N = 118 and 365 patients). These models were also expanded to a patient-derived xenograft (PDX) TMA, affording analysis of homotopic and heterotopic interactions of tumor and stroma. The status of all three genes could be inferred by DL, with BAP1 showing the highest sensitivity and performance within and across tissue samples (AUC = 0.87-0.89 on holdout). BAP1 results were validated on independent human (AUC = 0.77-0.84) and PDX (AUC = 0.80) cohorts. Finally, BAP1 predictions correlated with clinical outputs such as disease-specific survival. Overall, these data show that DL models can resolve intratumoral heterogeneity in cancer with potential diagnostic, prognostic, and biological implications.This work demonstrates the potential for deep learning analysis of histopathologic images to serve as a fast, low-cost method to assess genetic intratumoral heterogeneity. See related commentary by Song et al., p. 2672.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晓凡完成签到,获得积分10
1秒前
windyhill完成签到,获得积分10
1秒前
舍得完成签到,获得积分10
1秒前
玉婷完成签到,获得积分10
2秒前
等风来1234发布了新的文献求助10
2秒前
yyw驳回了情怀应助
3秒前
oaim完成签到,获得积分10
4秒前
Soleil发布了新的文献求助10
4秒前
aDou发布了新的文献求助10
4秒前
黎黎原上草完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
牡丹花下完成签到 ,获得积分10
5秒前
叶落孤城发布了新的文献求助10
5秒前
听话的十三完成签到,获得积分10
6秒前
yu001完成签到,获得积分10
6秒前
6秒前
梦游游游完成签到,获得积分10
7秒前
9秒前
好好学习发布了新的文献求助10
10秒前
正直樱桃发布了新的文献求助10
11秒前
lulu发布了新的文献求助10
12秒前
神奇海螺完成签到,获得积分10
12秒前
practice发布了新的文献求助10
13秒前
上官若男应助fairy采纳,获得10
13秒前
叶落孤城完成签到,获得积分10
13秒前
王景发布了新的文献求助10
13秒前
香蕉觅云应助meng采纳,获得10
15秒前
18秒前
李金奥完成签到 ,获得积分10
18秒前
hy1234完成签到 ,获得积分10
19秒前
20秒前
20秒前
念yft发布了新的文献求助10
22秒前
无花果应助正直樱桃采纳,获得10
23秒前
24秒前
Shaw发布了新的文献求助10
24秒前
小白发布了新的文献求助10
25秒前
Tao完成签到,获得积分10
26秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141768
求助须知:如何正确求助?哪些是违规求助? 2792736
关于积分的说明 7804148
捐赠科研通 2449027
什么是DOI,文献DOI怎么找? 1303050
科研通“疑难数据库(出版商)”最低求助积分说明 626718
版权声明 601260