Intratumoral Resolution of Driver Gene Mutation Heterogeneity in Renal Cancer Using Deep Learning

BAP1型 肾透明细胞癌 组织微阵列 遗传异质性 肾细胞癌 癌症 肾癌 肿瘤异质性 突变 癌症研究 肿瘤科 病理 计算生物学 生物 医学 内科学 基因 遗传学 表型
作者
Paul H. Acosta,Vandana Panwar,Vipul Jarmale,Alana Christie,Jay Jasti,Vitaly Margulis,Dinesh Rakheja,John C. Cheville,Bradley C. Leibovich,Alexander S. Parker,James Brugarolas,Payal Kapur,Satwik Rajaram
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:82 (15): 2792-2806 被引量:19
标识
DOI:10.1158/0008-5472.can-21-2318
摘要

Intratumoral heterogeneity arising from tumor evolution poses significant challenges biologically and clinically. Dissecting this complexity may benefit from deep learning (DL) algorithms, which can infer molecular features from ubiquitous hematoxylin and eosin (H&E)-stained tissue sections. Although DL algorithms have been developed to predict some driver mutations from H&E images, the ability of these DL algorithms to resolve intratumoral mutation heterogeneity at subclonal spatial resolution is unexplored. Here, we apply DL to a paradigm of intratumoral heterogeneity, clear cell renal cell carcinoma (ccRCC), the most common type of kidney cancer. Matched IHC and H&E images were leveraged to develop DL models for predicting intratumoral genetic heterogeneity of the three most frequently mutated ccRCC genes, BAP1, PBRM1, and SETD2. DL models were generated on a large cohort (N = 1,282) and tested on several independent cohorts, including a TCGA cohort (N = 363 patients) and two tissue microarray (TMA) cohorts (N = 118 and 365 patients). These models were also expanded to a patient-derived xenograft (PDX) TMA, affording analysis of homotopic and heterotopic interactions of tumor and stroma. The status of all three genes could be inferred by DL, with BAP1 showing the highest sensitivity and performance within and across tissue samples (AUC = 0.87-0.89 on holdout). BAP1 results were validated on independent human (AUC = 0.77-0.84) and PDX (AUC = 0.80) cohorts. Finally, BAP1 predictions correlated with clinical outputs such as disease-specific survival. Overall, these data show that DL models can resolve intratumoral heterogeneity in cancer with potential diagnostic, prognostic, and biological implications.This work demonstrates the potential for deep learning analysis of histopathologic images to serve as a fast, low-cost method to assess genetic intratumoral heterogeneity. See related commentary by Song et al., p. 2672.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助十闲采纳,获得10
1秒前
周媛媛完成签到,获得积分10
2秒前
2秒前
嘀嘀嘀发布了新的文献求助30
4秒前
4秒前
lli完成签到,获得积分20
4秒前
嘿嘿发布了新的文献求助10
5秒前
852应助lzh1353730567采纳,获得10
7秒前
lli发布了新的文献求助30
7秒前
上官若男应助wzh采纳,获得10
8秒前
11秒前
搜集达人应助地瓜采纳,获得10
11秒前
完美世界应助axiba采纳,获得10
12秒前
remoon1104完成签到,获得积分20
13秒前
13秒前
求助人员发布了新的文献求助10
13秒前
852应助linmiu采纳,获得10
15秒前
15秒前
15秒前
充电宝应助李圣诞采纳,获得10
19秒前
所所应助怕黑沛山采纳,获得10
19秒前
21秒前
王介完成签到,获得积分10
21秒前
可爱的函函应助yo一天采纳,获得10
22秒前
水水的完成签到 ,获得积分10
23秒前
箫笛发布了新的文献求助10
23秒前
W85发布了新的文献求助30
23秒前
从容从灵完成签到,获得积分20
24秒前
王介发布了新的文献求助10
26秒前
27秒前
27秒前
27秒前
27秒前
29秒前
小小怪下士应助PHHHH采纳,获得10
30秒前
remoon1104发布了新的文献求助10
30秒前
量子星尘发布了新的文献求助10
31秒前
年年完成签到,获得积分10
31秒前
32秒前
李圣诞发布了新的文献求助10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594252
求助须知:如何正确求助?哪些是违规求助? 4679915
关于积分的说明 14812161
捐赠科研通 4646417
什么是DOI,文献DOI怎么找? 2534795
邀请新用户注册赠送积分活动 1502804
关于科研通互助平台的介绍 1469490