Intratumoral Resolution of Driver Gene Mutation Heterogeneity in Renal Cancer Using Deep Learning

BAP1型 肾透明细胞癌 组织微阵列 遗传异质性 肾细胞癌 癌症 肾癌 肿瘤异质性 突变 癌症研究 肿瘤科 病理 计算生物学 生物 医学 内科学 基因 遗传学 表型
作者
Paul H. Acosta,Vandana Panwar,Vipul Jarmale,Alana Christie,Jay Jasti,Vitaly Margulis,Dinesh Rakheja,John C. Cheville,Bradley C. Leibovich,Alexander S. Parker,James Brugarolas,Payal Kapur,Satwik Rajaram
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:82 (15): 2792-2806 被引量:19
标识
DOI:10.1158/0008-5472.can-21-2318
摘要

Intratumoral heterogeneity arising from tumor evolution poses significant challenges biologically and clinically. Dissecting this complexity may benefit from deep learning (DL) algorithms, which can infer molecular features from ubiquitous hematoxylin and eosin (H&E)-stained tissue sections. Although DL algorithms have been developed to predict some driver mutations from H&E images, the ability of these DL algorithms to resolve intratumoral mutation heterogeneity at subclonal spatial resolution is unexplored. Here, we apply DL to a paradigm of intratumoral heterogeneity, clear cell renal cell carcinoma (ccRCC), the most common type of kidney cancer. Matched IHC and H&E images were leveraged to develop DL models for predicting intratumoral genetic heterogeneity of the three most frequently mutated ccRCC genes, BAP1, PBRM1, and SETD2. DL models were generated on a large cohort (N = 1,282) and tested on several independent cohorts, including a TCGA cohort (N = 363 patients) and two tissue microarray (TMA) cohorts (N = 118 and 365 patients). These models were also expanded to a patient-derived xenograft (PDX) TMA, affording analysis of homotopic and heterotopic interactions of tumor and stroma. The status of all three genes could be inferred by DL, with BAP1 showing the highest sensitivity and performance within and across tissue samples (AUC = 0.87-0.89 on holdout). BAP1 results were validated on independent human (AUC = 0.77-0.84) and PDX (AUC = 0.80) cohorts. Finally, BAP1 predictions correlated with clinical outputs such as disease-specific survival. Overall, these data show that DL models can resolve intratumoral heterogeneity in cancer with potential diagnostic, prognostic, and biological implications.This work demonstrates the potential for deep learning analysis of histopathologic images to serve as a fast, low-cost method to assess genetic intratumoral heterogeneity. See related commentary by Song et al., p. 2672.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
Jialin_He发布了新的文献求助30
3秒前
3秒前
灵巧水绿应助yhy采纳,获得10
3秒前
叶颤完成签到,获得积分10
3秒前
科目三应助华道之采纳,获得10
3秒前
4秒前
嘟嘟完成签到,获得积分10
4秒前
4秒前
aladi1011完成签到,获得积分10
4秒前
5秒前
5秒前
行道吉安完成签到,获得积分10
5秒前
6秒前
7秒前
7秒前
司藤完成签到 ,获得积分10
7秒前
哈哈哈发布了新的文献求助10
8秒前
哈哈哈哈发布了新的文献求助10
9秒前
hp571发布了新的文献求助30
10秒前
xiao.yang发布了新的文献求助10
10秒前
10秒前
10秒前
方小上发布了新的文献求助10
11秒前
uqfan发布了新的文献求助10
11秒前
诶诶发布了新的文献求助10
11秒前
11秒前
11秒前
夏明明发布了新的文献求助10
12秒前
13秒前
14秒前
情怀应助dinghaifeng采纳,获得30
14秒前
灵巧水绿应助彩色的过客采纳,获得10
14秒前
15秒前
朱冬雨完成签到,获得积分10
15秒前
飞快的半芹完成签到,获得积分10
15秒前
jjgbmt发布了新的文献求助30
15秒前
HuaJingjing完成签到,获得积分10
16秒前
16秒前
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950817
求助须知:如何正确求助?哪些是违规求助? 3496247
关于积分的说明 11080980
捐赠科研通 3226673
什么是DOI,文献DOI怎么找? 1783954
邀请新用户注册赠送积分活动 867992
科研通“疑难数据库(出版商)”最低求助积分说明 800993