Dual-energy CT based mass density and relative stopping power estimation for proton therapy using physics-informed deep learning

成像体模 人工神经网络 深度学习 人工智能 推论 残余物 质子疗法 阻止力 物理 计算机科学 医学物理学 机器学习 核医学 质子 算法 核物理学 医学 光学 探测器
作者
Chih‐Wei Chang,Yuan Gao,Tonghe Wang,Yang Lei,Qian Wang,Shaoyan Pan,Atchar Sudhyadhom,Jeffrey D. Bradley,Tian Liu,Liyong Lin,Jun Zhou,Xiaofeng Yang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:67 (11): 115010-115010 被引量:21
标识
DOI:10.1088/1361-6560/ac6ebc
摘要

Proton therapy requires accurate dose calculation for treatment planning to ensure the conformal doses are precisely delivered to the targets. The conversion of CT numbers to material properties is a significant source of uncertainty for dose calculation. The aim of this study is to develop a physics-informed deep learning (PIDL) framework to derive accurate mass density and relative stopping power maps from dual-energy computed tomography (DECT) images. The PIDL framework allows deep learning (DL) models to be trained with a physics loss function, which includes a physics model to constrain DL models. Five DL models were implemented including a fully connected neural network (FCNN), dual-FCNN (DFCNN), and three variants of residual networks (ResNet): ResNet-v1 (RN-v1), ResNet-v2 (RN-v2), and dual-ResNet-v2 (DRN-v2). An artificial neural network (ANN) and the five DL models trained with and without physics loss were explored to evaluate the PIDL framework. Two empirical DECT models were implemented to compare with the PIDL method. DL training data were from CIRS electron density phantom 062M (Computerized Imaging Reference Systems, Inc., Norfolk, VA). The performance of DL models was tested by CIRS adult male, adult female, and 5-year-old child anthropomorphic phantoms. For density map inference, the physics-informed RN-v2 was 3.3%, 2.9% and 1.9% more accurate than ANN for the adult male, adult female, and child phantoms. The physics-informed DRN-v2 was 0.7%, 0.6%, and 0.8% more accurate than DRN-v2 without physics training for the three phantoms, respectfully. The results indicated that physics-informed training could reduce uncertainty when ANN/DL models without physics training were insufficient to capture data structures or derived significant errors. DL models could also achieve better image noise control compared to the empirical DECT parametric mapping methods. The proposed PIDL framework can potentially improve proton range uncertainty by offering accurate material properties conversion from DECT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
迷路白桃发布了新的文献求助20
刚刚
ZeJ完成签到,获得积分10
1秒前
景别发布了新的文献求助10
1秒前
1秒前
NexusExplorer应助陈莹采纳,获得10
2秒前
GXY发布了新的文献求助10
2秒前
嘟嘟发布了新的文献求助10
3秒前
5秒前
Akim应助单纯的雅香采纳,获得10
5秒前
6秒前
7秒前
成就的书包完成签到,获得积分10
8秒前
小疙瘩发布了新的文献求助10
8秒前
9秒前
metalmd发布了新的文献求助10
9秒前
9秒前
学术蠕虫发布了新的文献求助10
11秒前
共享精神应助科研通管家采纳,获得10
11秒前
sutharsons应助科研通管家采纳,获得30
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
汉堡包应助科研通管家采纳,获得10
11秒前
酷波er应助科研通管家采纳,获得10
12秒前
研友_VZG7GZ应助科研通管家采纳,获得10
12秒前
小马甲应助科研通管家采纳,获得10
12秒前
Ava应助科研通管家采纳,获得10
12秒前
搜集达人应助科研通管家采纳,获得10
12秒前
斯文败类应助科研通管家采纳,获得10
12秒前
传奇3应助科研通管家采纳,获得10
12秒前
Orange应助科研通管家采纳,获得10
12秒前
pluto应助科研通管家采纳,获得10
12秒前
XShu发布了新的文献求助10
12秒前
领导范儿应助科研通管家采纳,获得10
12秒前
李爱国应助科研通管家采纳,获得30
12秒前
传奇3应助科研通管家采纳,获得30
12秒前
Owen应助科研通管家采纳,获得10
13秒前
香蕉觅云应助科研通管家采纳,获得10
13秒前
文艺明杰发布了新的文献求助100
14秒前
所所应助嘟嘟采纳,获得10
14秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808