Dual-energy CT based mass density and relative stopping power estimation for proton therapy using physics-informed deep learning

成像体模 人工神经网络 深度学习 人工智能 推论 残余物 质子疗法 阻止力 物理 计算机科学 医学物理学 机器学习 核医学 质子 算法 核物理学 医学 光学 探测器
作者
Chih‐Wei Chang,Yuan Gao,Tonghe Wang,Yang Lei,Qian Wang,Shaoyan Pan,Atchar Sudhyadhom,Jeffrey D. Bradley,Tian Liu,Liyong Lin,Jun Zhou,Xiaofeng Yang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:67 (11): 115010-115010 被引量:21
标识
DOI:10.1088/1361-6560/ac6ebc
摘要

Proton therapy requires accurate dose calculation for treatment planning to ensure the conformal doses are precisely delivered to the targets. The conversion of CT numbers to material properties is a significant source of uncertainty for dose calculation. The aim of this study is to develop a physics-informed deep learning (PIDL) framework to derive accurate mass density and relative stopping power maps from dual-energy computed tomography (DECT) images. The PIDL framework allows deep learning (DL) models to be trained with a physics loss function, which includes a physics model to constrain DL models. Five DL models were implemented including a fully connected neural network (FCNN), dual-FCNN (DFCNN), and three variants of residual networks (ResNet): ResNet-v1 (RN-v1), ResNet-v2 (RN-v2), and dual-ResNet-v2 (DRN-v2). An artificial neural network (ANN) and the five DL models trained with and without physics loss were explored to evaluate the PIDL framework. Two empirical DECT models were implemented to compare with the PIDL method. DL training data were from CIRS electron density phantom 062M (Computerized Imaging Reference Systems, Inc., Norfolk, VA). The performance of DL models was tested by CIRS adult male, adult female, and 5-year-old child anthropomorphic phantoms. For density map inference, the physics-informed RN-v2 was 3.3%, 2.9% and 1.9% more accurate than ANN for the adult male, adult female, and child phantoms. The physics-informed DRN-v2 was 0.7%, 0.6%, and 0.8% more accurate than DRN-v2 without physics training for the three phantoms, respectfully. The results indicated that physics-informed training could reduce uncertainty when ANN/DL models without physics training were insufficient to capture data structures or derived significant errors. DL models could also achieve better image noise control compared to the empirical DECT parametric mapping methods. The proposed PIDL framework can potentially improve proton range uncertainty by offering accurate material properties conversion from DECT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
quhayley应助HC采纳,获得10
刚刚
555557发布了新的文献求助10
刚刚
1秒前
1秒前
朱文韬发布了新的文献求助10
1秒前
summer夏完成签到,获得积分10
1秒前
开心的若烟完成签到,获得积分10
1秒前
1秒前
2秒前
dd完成签到,获得积分10
2秒前
2秒前
博博大佬发布了新的文献求助10
2秒前
2秒前
Michi完成签到,获得积分10
3秒前
wlz发布了新的文献求助10
4秒前
酷酷剑发布了新的文献求助10
4秒前
4秒前
昂口3发布了新的文献求助10
5秒前
Homura发布了新的文献求助10
5秒前
miao完成签到,获得积分10
5秒前
空空留遗憾完成签到,获得积分10
5秒前
Cherish完成签到 ,获得积分10
5秒前
Kai发布了新的文献求助10
6秒前
dongbei发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
7秒前
顾矜应助lmy采纳,获得10
7秒前
Rain发布了新的文献求助10
7秒前
7秒前
zzzzzzzzzj发布了新的文献求助10
8秒前
8秒前
9秒前
lxk55555发布了新的文献求助10
10秒前
zxy完成签到 ,获得积分10
10秒前
小叶曲完成签到,获得积分10
10秒前
大模型应助小冯看不懂采纳,获得10
10秒前
闲登小阁读新晴完成签到,获得积分10
10秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961223
求助须知:如何正确求助?哪些是违规求助? 3507496
关于积分的说明 11136509
捐赠科研通 3239958
什么是DOI,文献DOI怎么找? 1790571
邀请新用户注册赠送积分活动 872449
科研通“疑难数据库(出版商)”最低求助积分说明 803186