亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Heat Build-Up and Rolling Resistance Analysis of a Solid Tire: Experimental Observation and Numerical Simulation with Thermo-Mechanical Coupling Method

材料科学 联轴节(管道) 天然橡胶 工作(物理) 有限元法 机械 欧拉路径 变形(气象学) 粘弹性 计算机模拟 模数 结构工程 复合材料 机械工程 拉格朗日 数学 工程类 应用数学 物理
作者
He Hong,Jinming Liu,Yaru Zhang,Xue Han,W. V. Mars,Liqun Zhang,Fanzhu Li
出处
期刊:Polymers [MDPI AG]
卷期号:14 (11): 2210-2210 被引量:4
标识
DOI:10.3390/polym14112210
摘要

The hysteresis of rubber materials due to deformation and viscoelasticity is the main reason for the heat build-up (HBU) and rolling resistance (RR) of the rolling tire. It is important to realize the high precision prediction of HBU and RR of tire for the optimal design of high-performance fuel-saving tire. In this work, a thermo-mechanical coupling method based on Endurica and Abaqus co-simulation was used to predict the steady-state temperature distribution and RR of three finite element models (Lagrangian-Eulerian model, Lagrangian model, and Plane Strain model) of the solid tires under different loads and rotating speeds. The simulation results were compared with the experimental results. The Kraus self-heating model was utilized in the thermo-mechanical coupling method, which realized the quantitative relationship between the dynamic loss modulus of rubber and the loading conditions (temperature, strain, and strain rate). Special attention was paid to the determination of the material parameters in the Kraus self-heating model. The comparison between simulation results and experimental results shows that the Lagrangian model had the highest prediction accuracy, and the average prediction errors of the steady-state surface temperature and RR under three loading conditions were 3.4% and 7.9%, respectively. The Lagrangian-Eulerian model came in the second with average errors of 9.7% and 11.1%, respectively. The Plane Strain model had the worst prediction accuracy, with the average errors of 21.4% and 44.6%, respectively. In terms of the simulation time, the Plane Strain model had the lowest cost, and the average calculation time was 1143 s. The Lagrangian-Eulerian model took the second place, with an average calculation time of 2621 s. The Lagrangian model had the highest computation cost, with an average time of 5597 s. The comparison between the simulation results and the experimental results verified the effectiveness of the thermo-mechanical coupling analysis method. The methods of three finite element models of the solid tires in this work can provide some reference for the optimization design of elastomeric components (Lagrangian model), pneumatic tires (Lagrangian-Eulerian model), and non-pneumatic tires (Plane Strain model).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助Muller采纳,获得10
13秒前
23秒前
Jack80完成签到,获得积分0
54秒前
科研通AI2S应助Jack80采纳,获得10
1分钟前
张大然完成签到 ,获得积分10
1分钟前
香蕉觅云应助科研通管家采纳,获得10
1分钟前
呆瓜完成签到,获得积分10
1分钟前
1分钟前
zxd发布了新的文献求助10
2分钟前
CC发布了新的文献求助10
2分钟前
2分钟前
半生完成签到 ,获得积分10
2分钟前
2分钟前
NexusExplorer应助小样采纳,获得30
3分钟前
3分钟前
3分钟前
vivid完成签到,获得积分10
4分钟前
4分钟前
黄惠完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
5分钟前
小样发布了新的文献求助30
5分钟前
LYT发布了新的文献求助10
5分钟前
FashionBoy应助爱吃蒸蛋采纳,获得10
5分钟前
香蕉觅云应助LYT采纳,获得10
5分钟前
5分钟前
zxd发布了新的文献求助10
5分钟前
爱吃蒸蛋发布了新的文献求助10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
jyy应助科研通管家采纳,获得10
5分钟前
orixero应助RyanL采纳,获得10
5分钟前
5分钟前
LYT发布了新的文献求助10
6分钟前
6分钟前
田様应助Ophelia采纳,获得30
6分钟前
科目三应助Linyi采纳,获得10
6分钟前
6分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3341839
求助须知:如何正确求助?哪些是违规求助? 2969202
关于积分的说明 8637753
捐赠科研通 2648899
什么是DOI,文献DOI怎么找? 1450412
科研通“疑难数据库(出版商)”最低求助积分说明 671913
邀请新用户注册赠送积分活动 660986