Homogeneous Learning: Self-Attention Decentralized Deep Learning

同种类的 计算机科学 深度学习 人工智能 物理 统计物理学
作者
Yuwei Sun,Hideya Ochiai
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 7695-7703 被引量:8
标识
DOI:10.1109/access.2022.3142899
摘要

Federated learning (FL) has been facilitating privacy-preserving deep learning in many walks of life such as medical image classification, network intrusion detection, and so forth. Whereas it necessitates a central parameter server for model aggregation, which brings about delayed model communication and vulnerability to adversarial attacks. A fully decentralized architecture like Swarm Learning allows peer-to-peer communication among distributed nodes, without the central server. One of the most challenging issues in decentralized deep learning is that data owned by each node are usually non-independent and identically distributed (non-IID), causing time-consuming convergence of model training. To this end, we propose a decentralized learning model called Homogeneous Learning (HL) for tackling non-IID data with a self-attention mechanism. In HL, training performs on each round's selected node, and the trained model of a node is sent to the next selected node at the end of each round. Notably, for the selection, the self-attention mechanism leverages reinforcement learning to observe a node's inner state and its surrounding environment's state, and find out which node should be selected to optimize the training. We evaluate our method with various scenarios for two different image classification tasks. The result suggests that HL can achieve a better performance compared with standalone learning and greatly reduce both the total training rounds by 50.8% and the communication cost by 74.6% for decentralized learning with non-IID data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mzm发布了新的文献求助10
刚刚
小蘑菇应助邱靖贻采纳,获得10
刚刚
苏山抚河半向晚完成签到,获得积分10
刚刚
刚刚
zkexuan发布了新的文献求助10
1秒前
Ava应助细心的语蓉采纳,获得10
2秒前
3秒前
AlvinCZY发布了新的文献求助10
4秒前
xnnn发布了新的文献求助10
4秒前
xiao应助liuxiao采纳,获得10
4秒前
zl应助此晴可待采纳,获得10
4秒前
pluto应助此晴可待采纳,获得10
4秒前
哈哈哈完成签到,获得积分10
4秒前
专注的草丛完成签到,获得积分10
4秒前
万能图书馆应助ZF采纳,获得10
5秒前
黑囡应助Serendipity采纳,获得10
5秒前
7秒前
李会琳完成签到,获得积分10
7秒前
小蘑菇应助音符丷采纳,获得10
8秒前
8秒前
mzm完成签到,获得积分10
9秒前
沁钦完成签到,获得积分10
9秒前
江辰戏完成签到,获得积分10
10秒前
AlvinCZY完成签到,获得积分10
10秒前
11秒前
多边形完成签到,获得积分10
12秒前
12秒前
江辰戏发布了新的文献求助10
13秒前
13秒前
NexusExplorer应助超级的尔阳采纳,获得10
13秒前
李健的小迷弟应助十一采纳,获得10
14秒前
左手天下完成签到 ,获得积分10
14秒前
淡淡的向雁完成签到,获得积分10
15秒前
zhangpeng发布了新的文献求助10
16秒前
17秒前
酒吧舞男茜茜妈完成签到 ,获得积分10
18秒前
学术机器1发布了新的文献求助10
18秒前
平常的元蝶完成签到 ,获得积分10
19秒前
多边形发布了新的文献求助10
19秒前
大模型应助Ruilin Quan采纳,获得10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3560897
求助须知:如何正确求助?哪些是违规求助? 3134711
关于积分的说明 9409189
捐赠科研通 2834950
什么是DOI,文献DOI怎么找? 1558310
邀请新用户注册赠送积分活动 728082
科研通“疑难数据库(出版商)”最低求助积分说明 716686