Geospatial Transformer Is What You Need for Aircraft Detection in SAR Imagery

计算机科学 地理空间分析 人工智能 合成孔径雷达 卷积神经网络 特征提取 计算机视觉 深度学习 遥感 模式识别(心理学) 地质学
作者
Lifu Chen,Ru Luo,Xing Jin,Zhenhong Li,Zhihui Yuan,Xingmin Cai
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:6
标识
DOI:10.1109/tgrs.2022.3162235
摘要

Although deep learning techniques have achieved noticeable success in aircraft detection, the scale heterogeneity, position difference, complex background interference, and speckle noise keep aircraft detection in large-scale synthetic aperture radar (SAR) images challenging. To solve these problems, we propose the geospatial transformer framework and implement it as a three-step target detection neural network, namely, the image decomposition, the multiscale geospatial contextual attention network (MGCAN), and result recomposition. First, the given large-scale SAR image is decomposed into slices via sliding windows according to the image characteristics of the aircraft. Second, slices are input into the MGCAN network for feature extraction, and the cluster distance nonmaximum suppression (CD-NMS) is utilized to determine the bounding boxes of aircraft. Finally, the detection results are produced via recomposition. Two innovative geospatial attention modules are proposed within MGCAN, namely, the efficient pyramid convolution attention fusion (EPCAF) module and the parallel residual spatial attention (PRSA) module, to extract multiscale features of the aircraft and suppress background noise. In the experiment, four large-scale SAR images with 1-m resolution from the Gaofen-3 system are tested, which are not included in the dataset. The results indicate that the detection performance of our geospatial transformer is better than Faster R-CNN, SSD, Efficientdet-D0, and YOLOV5s. The geospatial transformer integrates deep learning with SAR target characteristics to fully capture the multiscale contextual information and geospatial information of aircraft, effectively reduces complex background interference, and tackles the position difference of targets. It greatly improves the detection performance of aircraft and offers an effective approach to merge SAR domain knowledge with deep learning techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
搬石头完成签到,获得积分10
刚刚
Clover04应助凯蒂晗晗采纳,获得50
1秒前
123456完成签到,获得积分10
1秒前
jjjwln完成签到,获得积分10
1秒前
TINATINA完成签到,获得积分10
1秒前
低头啃草牛完成签到 ,获得积分10
1秒前
沉静冬易完成签到,获得积分10
2秒前
生而追梦不止完成签到,获得积分10
3秒前
琉璃岁月完成签到,获得积分10
3秒前
konkon完成签到,获得积分10
3秒前
3秒前
自有龙骧完成签到,获得积分10
4秒前
小太阳完成签到,获得积分10
4秒前
5秒前
fxx2021完成签到,获得积分10
5秒前
APS完成签到,获得积分10
5秒前
6秒前
6秒前
南亭完成签到,获得积分10
6秒前
6秒前
研究僧完成签到,获得积分10
7秒前
刚果王子完成签到,获得积分10
9秒前
大反应釜完成签到,获得积分10
10秒前
闲人不贤完成签到,获得积分10
10秒前
King强完成签到,获得积分10
10秒前
林巧完成签到 ,获得积分10
10秒前
小孩完成签到 ,获得积分10
11秒前
坚定幻嫣完成签到 ,获得积分10
11秒前
狄剑通发布了新的文献求助10
11秒前
12秒前
孙鹏完成签到,获得积分10
13秒前
13秒前
包容鸭子完成签到,获得积分20
13秒前
DY完成签到,获得积分10
14秒前
相忘于江湖完成签到,获得积分10
14秒前
含蓄越彬完成签到,获得积分10
15秒前
鲤鱼小熊猫完成签到,获得积分10
15秒前
yellow完成签到 ,获得积分10
16秒前
十元完成签到,获得积分10
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146969
求助须知:如何正确求助?哪些是违规求助? 2798221
关于积分的说明 7827159
捐赠科研通 2454808
什么是DOI,文献DOI怎么找? 1306480
科研通“疑难数据库(出版商)”最低求助积分说明 627788
版权声明 601565