Geospatial Transformer Is What You Need for Aircraft Detection in SAR Imagery

计算机科学 地理空间分析 人工智能 合成孔径雷达 卷积神经网络 特征提取 计算机视觉 深度学习 遥感 模式识别(心理学) 地质学
作者
Lifu Chen,Ru Luo,Xing Jin,Zhenhong Li,Zhihui Yuan,Xingmin Cai
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:6
标识
DOI:10.1109/tgrs.2022.3162235
摘要

Although deep learning techniques have achieved noticeable success in aircraft detection, the scale heterogeneity, position difference, complex background interference, and speckle noise keep aircraft detection in large-scale synthetic aperture radar (SAR) images challenging. To solve these problems, we propose the geospatial transformer framework and implement it as a three-step target detection neural network, namely, the image decomposition, the multiscale geospatial contextual attention network (MGCAN), and result recomposition. First, the given large-scale SAR image is decomposed into slices via sliding windows according to the image characteristics of the aircraft. Second, slices are input into the MGCAN network for feature extraction, and the cluster distance nonmaximum suppression (CD-NMS) is utilized to determine the bounding boxes of aircraft. Finally, the detection results are produced via recomposition. Two innovative geospatial attention modules are proposed within MGCAN, namely, the efficient pyramid convolution attention fusion (EPCAF) module and the parallel residual spatial attention (PRSA) module, to extract multiscale features of the aircraft and suppress background noise. In the experiment, four large-scale SAR images with 1-m resolution from the Gaofen-3 system are tested, which are not included in the dataset. The results indicate that the detection performance of our geospatial transformer is better than Faster R-CNN, SSD, Efficientdet-D0, and YOLOV5s. The geospatial transformer integrates deep learning with SAR target characteristics to fully capture the multiscale contextual information and geospatial information of aircraft, effectively reduces complex background interference, and tackles the position difference of targets. It greatly improves the detection performance of aircraft and offers an effective approach to merge SAR domain knowledge with deep learning techniques.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
唠叨的夏烟完成签到 ,获得积分10
刚刚
wanci应助四月一日采纳,获得10
1秒前
Young发布了新的文献求助10
1秒前
有魅力的猫咪完成签到,获得积分10
1秒前
zwy完成签到,获得积分10
1秒前
无情的问枫完成签到 ,获得积分10
1秒前
LSY完成签到 ,获得积分10
2秒前
Lucas应助苏silence采纳,获得10
2秒前
友好雅山发布了新的文献求助10
2秒前
hushan53发布了新的文献求助10
2秒前
从容的完成签到 ,获得积分10
3秒前
云悠水澈完成签到,获得积分10
3秒前
顺利毕业完成签到,获得积分10
3秒前
炸鸡发布了新的文献求助10
3秒前
3秒前
量子星尘发布了新的文献求助20
3秒前
4秒前
Zz完成签到 ,获得积分10
4秒前
于林渤完成签到,获得积分20
4秒前
愚者先生完成签到 ,获得积分10
4秒前
狄百招完成签到,获得积分10
4秒前
4秒前
殷勤的紫槐应助咿呀咿呀哟采纳,获得200
4秒前
悦耳短靴完成签到 ,获得积分10
4秒前
5秒前
HTY完成签到 ,获得积分10
5秒前
优秀不愁发布了新的文献求助10
5秒前
舒心发布了新的文献求助10
5秒前
小白完成签到,获得积分10
5秒前
鹿呦完成签到 ,获得积分10
5秒前
JamesPei应助会爬树的苹果采纳,获得10
5秒前
zhuling发布了新的文献求助10
6秒前
番茄炒西红柿完成签到,获得积分10
7秒前
gaozy完成签到,获得积分10
7秒前
充电宝应助奋斗灵珊采纳,获得10
8秒前
8秒前
Akim应助夏冰采纳,获得10
8秒前
8秒前
wanci应助lvzhihao采纳,获得10
8秒前
Zzz发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573825
求助须知:如何正确求助?哪些是违规求助? 4660098
关于积分的说明 14727788
捐赠科研通 4599933
什么是DOI,文献DOI怎么找? 2524546
邀请新用户注册赠送积分活动 1494900
关于科研通互助平台的介绍 1464997