Geospatial Transformer Is What You Need for Aircraft Detection in SAR Imagery

计算机科学 地理空间分析 人工智能 合成孔径雷达 卷积神经网络 特征提取 计算机视觉 深度学习 遥感 模式识别(心理学) 地质学
作者
Lifu Chen,Ru Luo,Xing Jin,Zhenhong Li,Zhihui Yuan,Xingmin Cai
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:6
标识
DOI:10.1109/tgrs.2022.3162235
摘要

Although deep learning techniques have achieved noticeable success in aircraft detection, the scale heterogeneity, position difference, complex background interference, and speckle noise keep aircraft detection in large-scale synthetic aperture radar (SAR) images challenging. To solve these problems, we propose the geospatial transformer framework and implement it as a three-step target detection neural network, namely, the image decomposition, the multiscale geospatial contextual attention network (MGCAN), and result recomposition. First, the given large-scale SAR image is decomposed into slices via sliding windows according to the image characteristics of the aircraft. Second, slices are input into the MGCAN network for feature extraction, and the cluster distance nonmaximum suppression (CD-NMS) is utilized to determine the bounding boxes of aircraft. Finally, the detection results are produced via recomposition. Two innovative geospatial attention modules are proposed within MGCAN, namely, the efficient pyramid convolution attention fusion (EPCAF) module and the parallel residual spatial attention (PRSA) module, to extract multiscale features of the aircraft and suppress background noise. In the experiment, four large-scale SAR images with 1-m resolution from the Gaofen-3 system are tested, which are not included in the dataset. The results indicate that the detection performance of our geospatial transformer is better than Faster R-CNN, SSD, Efficientdet-D0, and YOLOV5s. The geospatial transformer integrates deep learning with SAR target characteristics to fully capture the multiscale contextual information and geospatial information of aircraft, effectively reduces complex background interference, and tackles the position difference of targets. It greatly improves the detection performance of aircraft and offers an effective approach to merge SAR domain knowledge with deep learning techniques.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
HanGao发布了新的文献求助10
刚刚
万能图书馆应助Helly采纳,获得10
1秒前
微笑枫发布了新的文献求助10
1秒前
青柠发布了新的文献求助20
1秒前
周明明完成签到 ,获得积分10
1秒前
Qq完成签到 ,获得积分10
1秒前
七yy发布了新的文献求助10
2秒前
urologywang完成签到 ,获得积分10
2秒前
BowieHuang应助刘培恒采纳,获得10
2秒前
Orange应助bbb采纳,获得10
2秒前
rr完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
Upupgrowth完成签到 ,获得积分10
3秒前
3秒前
研六六完成签到,获得积分10
3秒前
3秒前
莫等闲完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
aq22完成签到 ,获得积分10
4秒前
4秒前
八九完成签到 ,获得积分10
4秒前
4秒前
布布的宝贝完成签到,获得积分20
5秒前
呆萌乐萱发布了新的文献求助10
5秒前
chen发布了新的文献求助10
5秒前
Laer完成签到,获得积分10
5秒前
852应助chen采纳,获得10
5秒前
5秒前
5秒前
111完成签到,获得积分20
6秒前
花生糕完成签到,获得积分10
6秒前
6秒前
Alvienan完成签到,获得积分10
6秒前
6秒前
6秒前
张可发布了新的文献求助10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645662
求助须知:如何正确求助?哪些是违规求助? 4769440
关于积分的说明 15031321
捐赠科研通 4804378
什么是DOI,文献DOI怎么找? 2568968
邀请新用户注册赠送积分活动 1526089
关于科研通互助平台的介绍 1485700