清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Geospatial Transformer Is What You Need for Aircraft Detection in SAR Imagery

计算机科学 地理空间分析 人工智能 合成孔径雷达 卷积神经网络 特征提取 计算机视觉 深度学习 遥感 模式识别(心理学) 地质学
作者
Lifu Chen,Ru Luo,Xing Jin,Zhenhong Li,Zhihui Yuan,Xingmin Cai
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:6
标识
DOI:10.1109/tgrs.2022.3162235
摘要

Although deep learning techniques have achieved noticeable success in aircraft detection, the scale heterogeneity, position difference, complex background interference, and speckle noise keep aircraft detection in large-scale synthetic aperture radar (SAR) images challenging. To solve these problems, we propose the geospatial transformer framework and implement it as a three-step target detection neural network, namely, the image decomposition, the multiscale geospatial contextual attention network (MGCAN), and result recomposition. First, the given large-scale SAR image is decomposed into slices via sliding windows according to the image characteristics of the aircraft. Second, slices are input into the MGCAN network for feature extraction, and the cluster distance nonmaximum suppression (CD-NMS) is utilized to determine the bounding boxes of aircraft. Finally, the detection results are produced via recomposition. Two innovative geospatial attention modules are proposed within MGCAN, namely, the efficient pyramid convolution attention fusion (EPCAF) module and the parallel residual spatial attention (PRSA) module, to extract multiscale features of the aircraft and suppress background noise. In the experiment, four large-scale SAR images with 1-m resolution from the Gaofen-3 system are tested, which are not included in the dataset. The results indicate that the detection performance of our geospatial transformer is better than Faster R-CNN, SSD, Efficientdet-D0, and YOLOV5s. The geospatial transformer integrates deep learning with SAR target characteristics to fully capture the multiscale contextual information and geospatial information of aircraft, effectively reduces complex background interference, and tackles the position difference of targets. It greatly improves the detection performance of aircraft and offers an effective approach to merge SAR domain knowledge with deep learning techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
荀万声完成签到,获得积分10
20秒前
科研通AI5应助科研通管家采纳,获得10
31秒前
桐桐应助科研通管家采纳,获得10
31秒前
风清扬应助科研通管家采纳,获得10
31秒前
31秒前
凉面完成签到 ,获得积分10
36秒前
默默完成签到 ,获得积分10
1分钟前
妇产科医生完成签到 ,获得积分10
1分钟前
胡国伦完成签到 ,获得积分10
1分钟前
whuhustwit完成签到,获得积分10
1分钟前
xdd完成签到 ,获得积分10
1分钟前
1分钟前
sxx完成签到,获得积分10
2分钟前
2分钟前
cqmuluo发布了新的文献求助30
2分钟前
昔昔完成签到 ,获得积分10
2分钟前
所所应助科研通管家采纳,获得10
2分钟前
风清扬应助科研通管家采纳,获得10
2分钟前
2分钟前
Rayoo发布了新的文献求助10
2分钟前
Benhnhk21发布了新的文献求助10
2分钟前
Rayoo完成签到,获得积分10
2分钟前
2分钟前
小新小新完成签到 ,获得积分10
2分钟前
2分钟前
徐进完成签到,获得积分10
2分钟前
3分钟前
平常的三问完成签到 ,获得积分10
3分钟前
hyl-tcm完成签到 ,获得积分10
3分钟前
诺贝尔候选人完成签到 ,获得积分10
3分钟前
3分钟前
Skywalk满天星完成签到,获得积分10
3分钟前
桥西小河完成签到 ,获得积分10
4分钟前
爆米花应助科研通管家采纳,获得10
4分钟前
整齐的雪旋应助Benhnhk21采纳,获得10
4分钟前
Yolenders完成签到 ,获得积分10
5分钟前
kkk完成签到 ,获得积分10
5分钟前
5分钟前
Benhnhk21完成签到,获得积分10
5分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3949990
求助须知:如何正确求助?哪些是违规求助? 3495262
关于积分的说明 11076012
捐赠科研通 3225837
什么是DOI,文献DOI怎么找? 1783275
邀请新用户注册赠送积分活动 867584
科研通“疑难数据库(出版商)”最低求助积分说明 800839