A multi-objective integrated optimisation model for facility location and order allocation problem in a two-level supply chain network

数学优化 粒子群优化 供应链网络 计算机科学 设施选址问题 帕累托原理 时间范围 总成本 供应链 位置分配 供应链管理 数学 政治学 经济 微观经济学 法学
作者
Hamzeh Amin-Tahmasbi,Sina Sadafi,Banu Y. Ekren,Vikas Kumar
出处
期刊:Annals of Operations Research [Springer Nature]
卷期号:324 (1-2): 993-1022 被引量:11
标识
DOI:10.1007/s10479-022-04635-1
摘要

This study proposes a mixed-integer multi-objective integrated mathematical model solving facility location and order allocation optimisation problems simultaneously in a two-echelon supply chain network. The proposed problem is motivated by a factoryless concept and by providing a dynamic decision-making solution under a multi-period time horizon. Within the model, we also determine the optimal replenishment number of production facilities by the multi-objective functions. The multi-objective functions include minimisation of the total cost, rejected and late delivery units and, maximisation of the assessment score of the selected suppliers. The studied dynamic decision model is significant for the cost-efficient management of companies’ supply chain networks. The mixed-integer mathematical model is developed by the LP-metric method and it is solved by the GAMS optimisation software. Due to the NP-hard structure of the problem, for large-scale instances, we utilise the Multi-Objective Particle Swarm Optimisation (MOPSO) and Multi-Objective Vibration Damping Optimisation (MOVDO) heuristic solution approaches. Numerical results show that, for large-scale problems, the MOPSO method performs better in Pareto solutions and decreases run times. However, the MOVDO method performs better regarding the Mean Ideal Distance and the Number of Solutions Cover surface criterion. The developed solution approach by this paper is a generic model which can be applied for any two-level network for simultaneous optimisation of supplier selection, location determination of facilities and their replenishment amounts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助杨洋采纳,获得10
刚刚
顾矜应助汪进辉_Will采纳,获得10
刚刚
zhz发布了新的文献求助10
刚刚
科研通AI6应助刻苦的旺仔采纳,获得10
刚刚
Joyce发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
菜菜发布了新的文献求助10
1秒前
DrDong98发布了新的文献求助10
2秒前
chdlin发布了新的文献求助30
2秒前
妖妖完成签到,获得积分10
2秒前
2秒前
3秒前
赘婿应助sxy采纳,获得10
3秒前
4秒前
4秒前
SciGPT应助认真努力发SCI采纳,获得10
4秒前
dreammaker完成签到,获得积分10
4秒前
4秒前
贰壹发布了新的文献求助10
5秒前
lixm完成签到,获得积分10
5秒前
罗兴鲜完成签到,获得积分10
5秒前
5秒前
6秒前
魏云康发布了新的文献求助20
6秒前
华仔应助坚定的若枫采纳,获得10
6秒前
6秒前
6秒前
香蕉觅云应助17381362015采纳,获得10
7秒前
7秒前
郭耀锐发布了新的文献求助10
7秒前
xiu发布了新的文献求助20
7秒前
dongdongguai完成签到,获得积分10
8秒前
Heloise完成签到,获得积分10
8秒前
8秒前
8秒前
yaya驳回了JamesPei应助
8秒前
嘎嘎完成签到,获得积分10
9秒前
ddd完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624927
求助须知:如何正确求助?哪些是违规求助? 4710799
关于积分的说明 14952231
捐赠科研通 4778856
什么是DOI,文献DOI怎么找? 2553454
邀请新用户注册赠送积分活动 1515421
关于科研通互助平台的介绍 1475721