A multi-objective integrated optimisation model for facility location and order allocation problem in a two-level supply chain network

数学优化 粒子群优化 供应链网络 计算机科学 设施选址问题 帕累托原理 时间范围 总成本 供应链 位置分配 供应链管理 数学 政治学 法学 经济 微观经济学
作者
Hamzeh Amin-Tahmasbi,Sina Sadafi,Banu Y. Ekren,Vikas Kumar
出处
期刊:Annals of Operations Research [Springer Nature]
卷期号:324 (1-2): 993-1022 被引量:11
标识
DOI:10.1007/s10479-022-04635-1
摘要

This study proposes a mixed-integer multi-objective integrated mathematical model solving facility location and order allocation optimisation problems simultaneously in a two-echelon supply chain network. The proposed problem is motivated by a factoryless concept and by providing a dynamic decision-making solution under a multi-period time horizon. Within the model, we also determine the optimal replenishment number of production facilities by the multi-objective functions. The multi-objective functions include minimisation of the total cost, rejected and late delivery units and, maximisation of the assessment score of the selected suppliers. The studied dynamic decision model is significant for the cost-efficient management of companies’ supply chain networks. The mixed-integer mathematical model is developed by the LP-metric method and it is solved by the GAMS optimisation software. Due to the NP-hard structure of the problem, for large-scale instances, we utilise the Multi-Objective Particle Swarm Optimisation (MOPSO) and Multi-Objective Vibration Damping Optimisation (MOVDO) heuristic solution approaches. Numerical results show that, for large-scale problems, the MOPSO method performs better in Pareto solutions and decreases run times. However, the MOVDO method performs better regarding the Mean Ideal Distance and the Number of Solutions Cover surface criterion. The developed solution approach by this paper is a generic model which can be applied for any two-level network for simultaneous optimisation of supplier selection, location determination of facilities and their replenishment amounts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bbll完成签到,获得积分10
1秒前
郝宝真发布了新的文献求助10
1秒前
大模型应助li采纳,获得10
1秒前
港港完成签到 ,获得积分10
1秒前
rossliyi发布了新的文献求助10
1秒前
1秒前
上官若男应助包远锋采纳,获得30
1秒前
2秒前
勤奋的7完成签到,获得积分10
2秒前
2秒前
行城舟_完成签到 ,获得积分10
2秒前
能干的杨柿子完成签到 ,获得积分20
2秒前
萧水白发布了新的文献求助100
3秒前
小黄崽汁完成签到,获得积分10
4秒前
10Shi完成签到 ,获得积分10
5秒前
5秒前
echo完成签到,获得积分10
5秒前
行城舟_关注了科研通微信公众号
5秒前
霍旭芳完成签到,获得积分10
5秒前
老张完成签到,获得积分10
6秒前
勤奋的7发布了新的文献求助20
7秒前
ydfqlzj发布了新的文献求助10
7秒前
8秒前
8秒前
Jorna发布了新的文献求助10
8秒前
震动的乐天完成签到,获得积分10
8秒前
852应助哈哈采纳,获得10
8秒前
隐形曼青应助Enri采纳,获得10
8秒前
ured完成签到,获得积分20
9秒前
9秒前
10秒前
10秒前
li发布了新的文献求助10
11秒前
lanwei完成签到,获得积分10
11秒前
忧虑的芷天完成签到,获得积分10
11秒前
11秒前
慧慧完成签到 ,获得积分10
12秒前
ured发布了新的文献求助200
13秒前
13秒前
bopbopbaby发布了新的文献求助20
13秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147491
求助须知:如何正确求助?哪些是违规求助? 2798710
关于积分的说明 7830633
捐赠科研通 2455455
什么是DOI,文献DOI怎么找? 1306817
科研通“疑难数据库(出版商)”最低求助积分说明 627917
版权声明 601587