A multi-objective integrated optimisation model for facility location and order allocation problem in a two-level supply chain network

数学优化 粒子群优化 供应链网络 计算机科学 设施选址问题 帕累托原理 时间范围 总成本 供应链 位置分配 供应链管理 数学 政治学 法学 经济 微观经济学
作者
Hamzeh Amin-Tahmasbi,Sina Sadafi,Banu Y. Ekren,Vikas Kumar
出处
期刊:Annals of Operations Research [Springer Nature]
卷期号:324 (1-2): 993-1022 被引量:11
标识
DOI:10.1007/s10479-022-04635-1
摘要

This study proposes a mixed-integer multi-objective integrated mathematical model solving facility location and order allocation optimisation problems simultaneously in a two-echelon supply chain network. The proposed problem is motivated by a factoryless concept and by providing a dynamic decision-making solution under a multi-period time horizon. Within the model, we also determine the optimal replenishment number of production facilities by the multi-objective functions. The multi-objective functions include minimisation of the total cost, rejected and late delivery units and, maximisation of the assessment score of the selected suppliers. The studied dynamic decision model is significant for the cost-efficient management of companies’ supply chain networks. The mixed-integer mathematical model is developed by the LP-metric method and it is solved by the GAMS optimisation software. Due to the NP-hard structure of the problem, for large-scale instances, we utilise the Multi-Objective Particle Swarm Optimisation (MOPSO) and Multi-Objective Vibration Damping Optimisation (MOVDO) heuristic solution approaches. Numerical results show that, for large-scale problems, the MOPSO method performs better in Pareto solutions and decreases run times. However, the MOVDO method performs better regarding the Mean Ideal Distance and the Number of Solutions Cover surface criterion. The developed solution approach by this paper is a generic model which can be applied for any two-level network for simultaneous optimisation of supplier selection, location determination of facilities and their replenishment amounts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sigyn完成签到,获得积分10
刚刚
顺利琦发布了新的文献求助10
刚刚
刚刚
自由完成签到,获得积分20
1秒前
Volta_zz完成签到,获得积分10
1秒前
1秒前
欣欣子完成签到,获得积分10
2秒前
3秒前
111完成签到 ,获得积分10
3秒前
3秒前
柔弱煎饼发布了新的文献求助30
4秒前
4秒前
曹梦梦完成签到,获得积分10
4秒前
4秒前
风趣霆完成签到,获得积分10
5秒前
5秒前
5秒前
小二郎应助Sigyn采纳,获得10
5秒前
科研通AI5应助不对也没错采纳,获得10
5秒前
lyn完成签到,获得积分20
5秒前
6秒前
隐形觅翠完成签到,获得积分10
6秒前
刘鹏宇发布了新的文献求助10
6秒前
lizh187完成签到 ,获得积分10
6秒前
北城完成签到,获得积分10
6秒前
自由发布了新的文献求助10
7秒前
7秒前
小豆芽儿发布了新的文献求助10
7秒前
WNL发布了新的文献求助10
8秒前
Ngu完成签到,获得积分10
8秒前
科研通AI5应助冷艳后妈采纳,获得10
8秒前
陶1122发布了新的文献求助10
8秒前
万能图书馆应助乐观期待采纳,获得30
8秒前
krystal完成签到,获得积分10
8秒前
学术大小拿完成签到,获得积分10
9秒前
迪迦完成签到,获得积分10
9秒前
10秒前
乖乖发布了新的文献求助10
10秒前
10秒前
song24517发布了新的文献求助20
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678