A hybrid optimization strategy for deliverable intensity‐modulated radiotherapy plan generation using deep learning‐based dose prediction

体素 放射治疗计划 计算机科学 放射治疗 剂量学 人工智能 深度学习 医学物理学 医学 核医学 放射科
作者
Zihan Sun,Xiang Xia,Jiawei Fan,Jun Zhao,Kang Zhang,Jiazhou Wang,Weigang Hu
出处
期刊:Medical Physics [Wiley]
卷期号:49 (3): 1344-1356 被引量:28
标识
DOI:10.1002/mp.15462
摘要

Abstract Purpose To propose a clinically feasible automatic planning solution for external beam intensity‐modulated radiotherapy, including dose prediction via a deep learning and voxel‐based optimization strategy. Materials and methods The dose distribution of patients was predicted using a U‐Net‐based deep learning network based on the patient's anatomy information. One hundred seventeen patients with nasopharyngeal cancer (NPC) and 200 patients with rectal cancer were enrolled in this study. For NPC cases, 94 cases were included in the training dataset, 13 in the validation dataset, and 10 in the testing dataset. For rectal cancer cases, 172 cases were included in the training set, 18 in the validation set, and 10 in the testing set. A voxel‐based optimization strategy, “Voxel,” was proposed to achieve treatment planning optimization by dividing body voxels into two parts: inside planning target volumes (PTVs) and outside PTVs. Fixed dose‐volume objectives were attached to the total objective function to realize individualized planning intended as the “hybrid” optimizing strategy. Automatically generated plans were compared with clinically approved plans to evaluate clinical gains, according to dosimetric indices and dose‐volume histograms (DVHs). Results Similarities were found between the DVH of the predicted dose and clinical plan, although significant differences were found in some organs at risk. Better organ sparing and suboptimal PTV coverage were shown using the voxel strategy; however, the deviations in homogeneity indices (HIs) and conformity indices (CIs) of the PTV between automatically generated plans and manual plans were reduced by the hybrid strategy ([manual plans]/[voxel plans[/[hybrid plans]: HI of PTV70 [1.06/1.12/1.02] and CI of PTV70 [0.79/0.58/0.76]). The optimization time for each patient was within 1 min and included fluence map optimization, leaf sequencing, and control point optimization. All the generated plans (voxel and hybrid strategy) could be delivered on uRT‐linac 506c (United Imaging Healthcare, Shanghai, China). Conclusion Deliverable plans can be generated by incorporating a voxel‐based optimization strategy into a commercial treatment planning system (TPS). The hybrid optimization method shows the benefit and clinical feasibility in generating clinically acceptable plans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
KKKKK完成签到,获得积分10
3秒前
4秒前
充电宝应助无异常采纳,获得10
4秒前
一步一花青完成签到,获得积分10
5秒前
执着的莆发布了新的文献求助10
5秒前
6秒前
能干储发布了新的文献求助10
6秒前
6秒前
7秒前
共享精神应助贝利亚采纳,获得10
7秒前
喜悦飞鸟完成签到,获得积分10
7秒前
可爱的函函应助合欢采纳,获得10
7秒前
scugy发布了新的文献求助10
8秒前
可爱的函函应助vickymr采纳,获得10
8秒前
9秒前
laurel发布了新的文献求助10
10秒前
星辰大海应助英俊的白安采纳,获得10
10秒前
10秒前
11秒前
12秒前
14秒前
Gzdaigzn完成签到,获得积分10
14秒前
14秒前
陶醉清发布了新的文献求助10
15秒前
15秒前
南南东发布了新的文献求助10
15秒前
15秒前
芒果完成签到 ,获得积分10
16秒前
16秒前
Chan完成签到,获得积分10
17秒前
贝利亚发布了新的文献求助10
17秒前
浮浮世世发布了新的文献求助10
18秒前
19秒前
喜悦飞鸟发布了新的文献求助10
20秒前
李爱国应助布丁采纳,获得10
20秒前
21秒前
无异常发布了新的文献求助10
21秒前
合欢发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642218
求助须知:如何正确求助?哪些是违规求助? 4758455
关于积分的说明 15016860
捐赠科研通 4800783
什么是DOI,文献DOI怎么找? 2566211
邀请新用户注册赠送积分活动 1524307
关于科研通互助平台的介绍 1483909