A hybrid optimization strategy for deliverable intensity‐modulated radiotherapy plan generation using deep learning‐based dose prediction

体素 放射治疗计划 计算机科学 放射治疗 剂量学 人工智能 深度学习 医学物理学 医学 核医学 放射科
作者
Zihan Sun,Xiang Xia,Jiawei Fan,Jun Zhao,Kang Zhang,Jiazhou Wang,Weigang Hu
出处
期刊:Medical Physics [Wiley]
卷期号:49 (3): 1344-1356 被引量:28
标识
DOI:10.1002/mp.15462
摘要

Abstract Purpose To propose a clinically feasible automatic planning solution for external beam intensity‐modulated radiotherapy, including dose prediction via a deep learning and voxel‐based optimization strategy. Materials and methods The dose distribution of patients was predicted using a U‐Net‐based deep learning network based on the patient's anatomy information. One hundred seventeen patients with nasopharyngeal cancer (NPC) and 200 patients with rectal cancer were enrolled in this study. For NPC cases, 94 cases were included in the training dataset, 13 in the validation dataset, and 10 in the testing dataset. For rectal cancer cases, 172 cases were included in the training set, 18 in the validation set, and 10 in the testing set. A voxel‐based optimization strategy, “Voxel,” was proposed to achieve treatment planning optimization by dividing body voxels into two parts: inside planning target volumes (PTVs) and outside PTVs. Fixed dose‐volume objectives were attached to the total objective function to realize individualized planning intended as the “hybrid” optimizing strategy. Automatically generated plans were compared with clinically approved plans to evaluate clinical gains, according to dosimetric indices and dose‐volume histograms (DVHs). Results Similarities were found between the DVH of the predicted dose and clinical plan, although significant differences were found in some organs at risk. Better organ sparing and suboptimal PTV coverage were shown using the voxel strategy; however, the deviations in homogeneity indices (HIs) and conformity indices (CIs) of the PTV between automatically generated plans and manual plans were reduced by the hybrid strategy ([manual plans]/[voxel plans[/[hybrid plans]: HI of PTV70 [1.06/1.12/1.02] and CI of PTV70 [0.79/0.58/0.76]). The optimization time for each patient was within 1 min and included fluence map optimization, leaf sequencing, and control point optimization. All the generated plans (voxel and hybrid strategy) could be delivered on uRT‐linac 506c (United Imaging Healthcare, Shanghai, China). Conclusion Deliverable plans can be generated by incorporating a voxel‐based optimization strategy into a commercial treatment planning system (TPS). The hybrid optimization method shows the benefit and clinical feasibility in generating clinically acceptable plans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaohan发布了新的文献求助10
刚刚
Nora发布了新的文献求助10
刚刚
现代白玉发布了新的文献求助10
刚刚
柚子完成签到,获得积分10
刚刚
刚刚
刚刚
万能图书馆应助NIUBEN采纳,获得10
刚刚
2秒前
2秒前
2秒前
李健的小迷弟应助风清扬采纳,获得10
2秒前
creasent完成签到,获得积分10
2秒前
马秀玲发布了新的文献求助10
2秒前
aaaaa22222完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
somnus完成签到,获得积分10
5秒前
深情安青应助碧蓝醉卉采纳,获得10
5秒前
wtt123发布了新的文献求助10
6秒前
nkmenghan发布了新的文献求助10
6秒前
彭于晏应助啵子采纳,获得10
6秒前
流觞俊秀完成签到 ,获得积分10
6秒前
上官若男应助Eshujia采纳,获得10
6秒前
7秒前
浮游应助月蚀六花采纳,获得10
7秒前
7秒前
英俊的菲鹰完成签到,获得积分20
7秒前
中中中发布了新的文献求助10
7秒前
7秒前
7秒前
bhhyyy应助minsu采纳,获得10
8秒前
CodeCraft应助minsu采纳,获得10
8秒前
无私擎完成签到,获得积分10
8秒前
伍志伟发布了新的文献求助10
8秒前
8秒前
桐桐应助甜美冰蓝采纳,获得30
9秒前
9秒前
9秒前
万能图书馆应助37采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5483532
求助须知:如何正确求助?哪些是违规求助? 4584237
关于积分的说明 14395715
捐赠科研通 4513936
什么是DOI,文献DOI怎么找? 2473733
邀请新用户注册赠送积分活动 1459777
关于科研通互助平台的介绍 1433177