A hybrid optimization strategy for deliverable intensity‐modulated radiotherapy plan generation using deep learning‐based dose prediction

体素 放射治疗计划 计算机科学 放射治疗 剂量学 人工智能 深度学习 医学物理学 医学 核医学 放射科
作者
Zihan Sun,Xiang Xia,Jiawei Fan,Jun Zhao,Kang Zhang,Jiazhou Wang,Weigang Hu
出处
期刊:Medical Physics [Wiley]
卷期号:49 (3): 1344-1356 被引量:28
标识
DOI:10.1002/mp.15462
摘要

Abstract Purpose To propose a clinically feasible automatic planning solution for external beam intensity‐modulated radiotherapy, including dose prediction via a deep learning and voxel‐based optimization strategy. Materials and methods The dose distribution of patients was predicted using a U‐Net‐based deep learning network based on the patient's anatomy information. One hundred seventeen patients with nasopharyngeal cancer (NPC) and 200 patients with rectal cancer were enrolled in this study. For NPC cases, 94 cases were included in the training dataset, 13 in the validation dataset, and 10 in the testing dataset. For rectal cancer cases, 172 cases were included in the training set, 18 in the validation set, and 10 in the testing set. A voxel‐based optimization strategy, “Voxel,” was proposed to achieve treatment planning optimization by dividing body voxels into two parts: inside planning target volumes (PTVs) and outside PTVs. Fixed dose‐volume objectives were attached to the total objective function to realize individualized planning intended as the “hybrid” optimizing strategy. Automatically generated plans were compared with clinically approved plans to evaluate clinical gains, according to dosimetric indices and dose‐volume histograms (DVHs). Results Similarities were found between the DVH of the predicted dose and clinical plan, although significant differences were found in some organs at risk. Better organ sparing and suboptimal PTV coverage were shown using the voxel strategy; however, the deviations in homogeneity indices (HIs) and conformity indices (CIs) of the PTV between automatically generated plans and manual plans were reduced by the hybrid strategy ([manual plans]/[voxel plans[/[hybrid plans]: HI of PTV70 [1.06/1.12/1.02] and CI of PTV70 [0.79/0.58/0.76]). The optimization time for each patient was within 1 min and included fluence map optimization, leaf sequencing, and control point optimization. All the generated plans (voxel and hybrid strategy) could be delivered on uRT‐linac 506c (United Imaging Healthcare, Shanghai, China). Conclusion Deliverable plans can be generated by incorporating a voxel‐based optimization strategy into a commercial treatment planning system (TPS). The hybrid optimization method shows the benefit and clinical feasibility in generating clinically acceptable plans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liu发布了新的文献求助10
2秒前
3秒前
Winy发布了新的文献求助50
3秒前
4秒前
5秒前
flypipidan完成签到,获得积分10
5秒前
5秒前
6秒前
李健应助紧张的丹云采纳,获得10
7秒前
桐桐应助小西采纳,获得10
8秒前
无人深空完成签到,获得积分10
8秒前
junzilan发布了新的文献求助10
9秒前
失眠采白完成签到,获得积分10
9秒前
10秒前
Forever完成签到,获得积分10
10秒前
sun完成签到,获得积分20
10秒前
赘婿应助真实的数据线采纳,获得30
10秒前
无奈的小虾米完成签到 ,获得积分10
11秒前
12秒前
12秒前
蛋蛋姐姐完成签到,获得积分10
12秒前
12秒前
15秒前
传奇3应助wyh采纳,获得10
15秒前
15秒前
16秒前
16秒前
16秒前
Zosty发布了新的文献求助10
17秒前
腦內小劇場完成签到 ,获得积分10
18秒前
18秒前
脑洞疼应助Q宝采纳,获得10
18秒前
19秒前
20秒前
浮游应助sinn17采纳,获得10
20秒前
嘿嘿应助王允泰采纳,获得10
21秒前
21秒前
鱼头星星完成签到,获得积分20
21秒前
哆啦十七完成签到,获得积分10
21秒前
默默发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5317139
求助须知:如何正确求助?哪些是违规求助? 4459587
关于积分的说明 13875850
捐赠科研通 4349563
什么是DOI,文献DOI怎么找? 2388945
邀请新用户注册赠送积分活动 1383134
关于科研通互助平台的介绍 1352384