A hybrid optimization strategy for deliverable intensity‐modulated radiotherapy plan generation using deep learning‐based dose prediction

体素 放射治疗计划 计算机科学 放射治疗 剂量学 人工智能 深度学习 医学物理学 医学 核医学 放射科
作者
Zhaoqing Sun,Xiang Xia,Jicong Fan,Jun Zhao,Kang Zhang,Jiazhou Wang,Weigang Hu
出处
期刊:Medical Physics [Wiley]
卷期号:49 (3): 1344-1356 被引量:10
标识
DOI:10.1002/mp.15462
摘要

To propose a clinically feasible automatic planning solution for external beam intensity-modulated radiotherapy, including dose prediction via a deep learning and voxel-based optimization strategy.The dose distribution of patients was predicted using a U-Net-based deep learning network based on the patient's anatomy information. One hundred seventeen patients with nasopharyngeal cancer (NPC) and 200 patients with rectal cancer were enrolled in this study. For NPC cases, 94 cases were included in the training dataset, 13 in the validation dataset, and 10 in the testing dataset. For rectal cancer cases, 172 cases were included in the training set, 18 in the validation set, and 10 in the testing set. A voxel-based optimization strategy, "Voxel," was proposed to achieve treatment planning optimization by dividing body voxels into two parts: inside planning target volumes (PTVs) and outside PTVs. Fixed dose-volume objectives were attached to the total objective function to realize individualized planning intended as the "hybrid" optimizing strategy. Automatically generated plans were compared with clinically approved plans to evaluate clinical gains, according to dosimetric indices and dose-volume histograms (DVHs).Similarities were found between the DVH of the predicted dose and clinical plan, although significant differences were found in some organs at risk. Better organ sparing and suboptimal PTV coverage were shown using the voxel strategy; however, the deviations in homogeneity indices (HIs) and conformity indices (CIs) of the PTV between automatically generated plans and manual plans were reduced by the hybrid strategy ([manual plans]/[voxel plans[/[hybrid plans]: HI of PTV70 [1.06/1.12/1.02] and CI of PTV70 [0.79/0.58/0.76]). The optimization time for each patient was within 1 min and included fluence map optimization, leaf sequencing, and control point optimization. All the generated plans (voxel and hybrid strategy) could be delivered on uRT-linac 506c (United Imaging Healthcare, Shanghai, China).Deliverable plans can be generated by incorporating a voxel-based optimization strategy into a commercial treatment planning system (TPS). The hybrid optimization method shows the benefit and clinical feasibility in generating clinically acceptable plans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奥特波顿发布了新的文献求助10
刚刚
刘丽梅完成签到 ,获得积分10
2秒前
2秒前
wangdanli完成签到,获得积分10
3秒前
4秒前
5秒前
5秒前
x1981完成签到,获得积分10
6秒前
小西完成签到 ,获得积分10
6秒前
嘻哈发布了新的文献求助10
6秒前
7秒前
Billy发布了新的文献求助10
7秒前
9秒前
9秒前
奥特波顿完成签到,获得积分10
10秒前
刘Liam完成签到 ,获得积分10
11秒前
无花果应助wangdanli采纳,获得10
11秒前
吱吱发布了新的文献求助10
12秒前
FashionBoy应助糊涂的猎豹采纳,获得30
12秒前
wtt发布了新的文献求助10
12秒前
13秒前
哈哈哈哈发布了新的文献求助10
14秒前
15秒前
16秒前
852应助RNAPW采纳,获得10
16秒前
嘎嘎嘎完成签到,获得积分10
16秒前
17秒前
123完成签到,获得积分20
18秒前
沉默初雪发布了新的文献求助10
19秒前
今后应助paixxxxx采纳,获得10
20秒前
20秒前
CC悟了发布了新的文献求助10
21秒前
个性跳跳糖完成签到,获得积分10
22秒前
22秒前
23秒前
24秒前
丘比特应助留胡子的锦程采纳,获得10
25秒前
123发布了新的文献求助10
25秒前
26秒前
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975661
求助须知:如何正确求助?哪些是违规求助? 3520000
关于积分的说明 11200535
捐赠科研通 3256410
什么是DOI,文献DOI怎么找? 1798247
邀请新用户注册赠送积分活动 877490
科研通“疑难数据库(出版商)”最低求助积分说明 806390