A hybrid optimization strategy for deliverable intensity‐modulated radiotherapy plan generation using deep learning‐based dose prediction

体素 放射治疗计划 计算机科学 放射治疗 剂量学 人工智能 深度学习 医学物理学 医学 核医学 放射科
作者
Zhaoqing Sun,Xiang Xia,Jicong Fan,Jun Zhao,Kang Zhang,Jiazhou Wang,Weigang Hu
出处
期刊:Medical Physics [Wiley]
卷期号:49 (3): 1344-1356 被引量:10
标识
DOI:10.1002/mp.15462
摘要

To propose a clinically feasible automatic planning solution for external beam intensity-modulated radiotherapy, including dose prediction via a deep learning and voxel-based optimization strategy.The dose distribution of patients was predicted using a U-Net-based deep learning network based on the patient's anatomy information. One hundred seventeen patients with nasopharyngeal cancer (NPC) and 200 patients with rectal cancer were enrolled in this study. For NPC cases, 94 cases were included in the training dataset, 13 in the validation dataset, and 10 in the testing dataset. For rectal cancer cases, 172 cases were included in the training set, 18 in the validation set, and 10 in the testing set. A voxel-based optimization strategy, "Voxel," was proposed to achieve treatment planning optimization by dividing body voxels into two parts: inside planning target volumes (PTVs) and outside PTVs. Fixed dose-volume objectives were attached to the total objective function to realize individualized planning intended as the "hybrid" optimizing strategy. Automatically generated plans were compared with clinically approved plans to evaluate clinical gains, according to dosimetric indices and dose-volume histograms (DVHs).Similarities were found between the DVH of the predicted dose and clinical plan, although significant differences were found in some organs at risk. Better organ sparing and suboptimal PTV coverage were shown using the voxel strategy; however, the deviations in homogeneity indices (HIs) and conformity indices (CIs) of the PTV between automatically generated plans and manual plans were reduced by the hybrid strategy ([manual plans]/[voxel plans[/[hybrid plans]: HI of PTV70 [1.06/1.12/1.02] and CI of PTV70 [0.79/0.58/0.76]). The optimization time for each patient was within 1 min and included fluence map optimization, leaf sequencing, and control point optimization. All the generated plans (voxel and hybrid strategy) could be delivered on uRT-linac 506c (United Imaging Healthcare, Shanghai, China).Deliverable plans can be generated by incorporating a voxel-based optimization strategy into a commercial treatment planning system (TPS). The hybrid optimization method shows the benefit and clinical feasibility in generating clinically acceptable plans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
FashionBoy应助vvlydia采纳,获得10
1秒前
可爱的函函应助九卫采纳,获得10
1秒前
嗨是完成签到,获得积分10
2秒前
我我我我我不一样烟火完成签到,获得积分10
2秒前
渔夫完成签到,获得积分10
2秒前
酷波er应助吴洲凤采纳,获得10
3秒前
3秒前
3秒前
6秒前
邓邓发布了新的文献求助10
6秒前
7秒前
7秒前
9秒前
10秒前
hyw发布了新的文献求助10
14秒前
九卫发布了新的文献求助10
15秒前
15秒前
小鱼儿发布了新的文献求助10
15秒前
16秒前
吴洲凤发布了新的文献求助10
19秒前
20秒前
小二郎应助小钱钱采纳,获得10
20秒前
量子星尘发布了新的文献求助30
22秒前
鲸鱼发布了新的文献求助10
22秒前
浮游应助Sissel采纳,获得10
23秒前
bbihk完成签到,获得积分10
23秒前
默默善愁发布了新的文献求助10
24秒前
26秒前
天天快乐应助slin_sjtu采纳,获得10
27秒前
Sea_moon完成签到,获得积分10
28秒前
29秒前
科目三应助HENHer采纳,获得10
30秒前
30秒前
qifeng完成签到,获得积分10
31秒前
31秒前
Mizuki完成签到,获得积分10
31秒前
32秒前
彭于晏应助风中的眼神采纳,获得10
35秒前
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Symbiosis: A Very Short Introduction 1500
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
Letters from Rewi Alley to Ida Pruitt, 1954-1964, vol. 1 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4967770
求助须知:如何正确求助?哪些是违规求助? 4225455
关于积分的说明 13159277
捐赠科研通 4012275
什么是DOI,文献DOI怎么找? 2195475
邀请新用户注册赠送积分活动 1208861
关于科研通互助平台的介绍 1122837