A hybrid optimization strategy for deliverable intensity‐modulated radiotherapy plan generation using deep learning‐based dose prediction

体素 放射治疗计划 计算机科学 放射治疗 剂量学 人工智能 深度学习 医学物理学 医学 核医学 放射科
作者
Zihan Sun,Xiang Xia,Jiawei Fan,Jun Zhao,Kang Zhang,Jiazhou Wang,Weigang Hu
出处
期刊:Medical Physics [Wiley]
卷期号:49 (3): 1344-1356 被引量:28
标识
DOI:10.1002/mp.15462
摘要

Abstract Purpose To propose a clinically feasible automatic planning solution for external beam intensity‐modulated radiotherapy, including dose prediction via a deep learning and voxel‐based optimization strategy. Materials and methods The dose distribution of patients was predicted using a U‐Net‐based deep learning network based on the patient's anatomy information. One hundred seventeen patients with nasopharyngeal cancer (NPC) and 200 patients with rectal cancer were enrolled in this study. For NPC cases, 94 cases were included in the training dataset, 13 in the validation dataset, and 10 in the testing dataset. For rectal cancer cases, 172 cases were included in the training set, 18 in the validation set, and 10 in the testing set. A voxel‐based optimization strategy, “Voxel,” was proposed to achieve treatment planning optimization by dividing body voxels into two parts: inside planning target volumes (PTVs) and outside PTVs. Fixed dose‐volume objectives were attached to the total objective function to realize individualized planning intended as the “hybrid” optimizing strategy. Automatically generated plans were compared with clinically approved plans to evaluate clinical gains, according to dosimetric indices and dose‐volume histograms (DVHs). Results Similarities were found between the DVH of the predicted dose and clinical plan, although significant differences were found in some organs at risk. Better organ sparing and suboptimal PTV coverage were shown using the voxel strategy; however, the deviations in homogeneity indices (HIs) and conformity indices (CIs) of the PTV between automatically generated plans and manual plans were reduced by the hybrid strategy ([manual plans]/[voxel plans[/[hybrid plans]: HI of PTV70 [1.06/1.12/1.02] and CI of PTV70 [0.79/0.58/0.76]). The optimization time for each patient was within 1 min and included fluence map optimization, leaf sequencing, and control point optimization. All the generated plans (voxel and hybrid strategy) could be delivered on uRT‐linac 506c (United Imaging Healthcare, Shanghai, China). Conclusion Deliverable plans can be generated by incorporating a voxel‐based optimization strategy into a commercial treatment planning system (TPS). The hybrid optimization method shows the benefit and clinical feasibility in generating clinically acceptable plans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rubyii发布了新的文献求助10
刚刚
zzzzzzz完成签到 ,获得积分10
1秒前
1秒前
1秒前
PORCO完成签到,获得积分10
2秒前
浮游应助Zac采纳,获得10
3秒前
4秒前
英姑应助西子采纳,获得10
5秒前
5秒前
yaoyao发布了新的文献求助10
6秒前
6秒前
yijibaoli完成签到 ,获得积分10
7秒前
7秒前
及禾发布了新的文献求助10
7秒前
研友_n2Qv2L发布了新的文献求助10
7秒前
8秒前
7788完成签到,获得积分10
9秒前
FyD关闭了FyD文献求助
10秒前
10秒前
wch发布了新的文献求助10
10秒前
11秒前
瞿绝悟发布了新的文献求助10
11秒前
沉静飞雪完成签到,获得积分10
11秒前
11秒前
聂珩发布了新的文献求助10
11秒前
11秒前
寒冷的书白完成签到,获得积分20
12秒前
橙子发布了新的文献求助10
13秒前
Lucas应助李里哩采纳,获得10
13秒前
腼腆的初蓝完成签到,获得积分10
14秒前
15秒前
wz关注了科研通微信公众号
15秒前
狐妖完成签到,获得积分10
16秒前
wwwwww发布了新的文献求助10
16秒前
16秒前
16秒前
17秒前
17秒前
辛勤秋双发布了新的文献求助20
17秒前
科目三应助亮仔采纳,获得10
17秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694859
求助须知:如何正确求助?哪些是违规求助? 5099094
关于积分的说明 15214731
捐赠科研通 4851410
什么是DOI,文献DOI怎么找? 2602316
邀请新用户注册赠送积分活动 1554181
关于科研通互助平台的介绍 1512082