A hybrid optimization strategy for deliverable intensity‐modulated radiotherapy plan generation using deep learning‐based dose prediction

体素 放射治疗计划 计算机科学 放射治疗 剂量学 人工智能 深度学习 医学物理学 医学 核医学 放射科
作者
Zhaoqing Sun,Xiang Xia,Jicong Fan,Jun Zhao,Kang Zhang,Jiazhou Wang,Weigang Hu
出处
期刊:Medical Physics [Wiley]
卷期号:49 (3): 1344-1356 被引量:10
标识
DOI:10.1002/mp.15462
摘要

To propose a clinically feasible automatic planning solution for external beam intensity-modulated radiotherapy, including dose prediction via a deep learning and voxel-based optimization strategy.The dose distribution of patients was predicted using a U-Net-based deep learning network based on the patient's anatomy information. One hundred seventeen patients with nasopharyngeal cancer (NPC) and 200 patients with rectal cancer were enrolled in this study. For NPC cases, 94 cases were included in the training dataset, 13 in the validation dataset, and 10 in the testing dataset. For rectal cancer cases, 172 cases were included in the training set, 18 in the validation set, and 10 in the testing set. A voxel-based optimization strategy, "Voxel," was proposed to achieve treatment planning optimization by dividing body voxels into two parts: inside planning target volumes (PTVs) and outside PTVs. Fixed dose-volume objectives were attached to the total objective function to realize individualized planning intended as the "hybrid" optimizing strategy. Automatically generated plans were compared with clinically approved plans to evaluate clinical gains, according to dosimetric indices and dose-volume histograms (DVHs).Similarities were found between the DVH of the predicted dose and clinical plan, although significant differences were found in some organs at risk. Better organ sparing and suboptimal PTV coverage were shown using the voxel strategy; however, the deviations in homogeneity indices (HIs) and conformity indices (CIs) of the PTV between automatically generated plans and manual plans were reduced by the hybrid strategy ([manual plans]/[voxel plans[/[hybrid plans]: HI of PTV70 [1.06/1.12/1.02] and CI of PTV70 [0.79/0.58/0.76]). The optimization time for each patient was within 1 min and included fluence map optimization, leaf sequencing, and control point optimization. All the generated plans (voxel and hybrid strategy) could be delivered on uRT-linac 506c (United Imaging Healthcare, Shanghai, China).Deliverable plans can be generated by incorporating a voxel-based optimization strategy into a commercial treatment planning system (TPS). The hybrid optimization method shows the benefit and clinical feasibility in generating clinically acceptable plans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YELLOW完成签到,获得积分10
3秒前
3秒前
史萌发布了新的文献求助40
4秒前
4秒前
5秒前
虾502发布了新的文献求助10
5秒前
卿欣完成签到 ,获得积分10
6秒前
雅青完成签到 ,获得积分10
6秒前
小太爷灬发布了新的文献求助10
6秒前
7秒前
清茶完成签到,获得积分10
7秒前
飞舞的青鱼完成签到,获得积分10
8秒前
9秒前
立食劳栖发布了新的文献求助10
9秒前
金熙美发布了新的文献求助10
10秒前
C2发布了新的文献求助10
12秒前
壮观雁易发布了新的文献求助10
13秒前
一身是月完成签到,获得积分20
14秒前
15秒前
搜集达人应助科研通管家采纳,获得30
16秒前
汉堡包应助科研通管家采纳,获得10
16秒前
充电宝应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
Ava应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
16秒前
16秒前
16秒前
17秒前
夏xia完成签到 ,获得积分10
18秒前
CChi0923发布了新的文献求助10
18秒前
立食劳栖完成签到,获得积分10
18秒前
LingYun发布了新的文献求助10
18秒前
Zzz完成签到 ,获得积分10
19秒前
逢强必赢完成签到,获得积分10
19秒前
乐乐应助C2采纳,获得10
20秒前
动漫大师发布了新的文献求助10
20秒前
huohuo143发布了新的文献求助10
21秒前
梦梦的小可爱完成签到 ,获得积分10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
A mandible of Pliosaurus brachyspondylus (Reptilia, Sauropterygia) from the Kimmeridgian of the Boulonnais (France) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3680461
求助须知:如何正确求助?哪些是违规求助? 3232826
关于积分的说明 9804912
捐赠科研通 2944111
什么是DOI,文献DOI怎么找? 1614405
邀请新用户注册赠送积分活动 762183
科研通“疑难数据库(出版商)”最低求助积分说明 737287