Pest-YOLO: Deep Image Mining and Multi-Feature Fusion for Real-Time Agriculture Pest Detection

计算机科学 卷积神经网络 有害生物分析 人工智能 特征(语言学) 特征提取 目标检测 模式识别(心理学) 数据挖掘 语言学 哲学 业务 营销
作者
Zhe Tang,Zhengyun Chen,Fang Qi,Lingyan Zhang,Shuhong Chen
标识
DOI:10.1109/icdm51629.2021.00169
摘要

The frequent outbreaks of agriculture pests have caused heavy losses in crop production. And the small size and high similarity of agricultural pests bring challenges to the prompt and accurate pest detection using imaging technologies. The key impetus of this paper is to achieve a good balance between efficiency and accuracy for pest detection on the basis of agricultural image data mining. This paper proposes Pest-YOLO which is a real-time agriculture pest detection method based on the improved convolutional neural network (CNN) and YOLOv4. First, a squeeze-and-excitation attention mechanism module is introduced to CNN for mining image data, extracting key features, and suppressing unrelated features. Then, a cross-stage multi-feature fusion method is designed to improve the structure of feature pyramid network and path aggregation network, thus enhancing the feature expressiveness of small targets like pests. Finally, our Pest-YOLO realizes end-to-end real-time pest detection with high accuracy based on improved CNN and YOLOv4. We evaluate the performance of our method on a typical large-scale pest dataset including 28k images and 24 classes. Experimental results demonstrate that our method outperforms the state-of-the-art solutions including Faster R-CNN and YOLO-based detectors, and achieves good performance with 71.6% mAP and 83.5% Recall. The proposed method is effective and applicable for accurate and real-time intelligent pest detection without expertise feature engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
眼睛大的冰岚完成签到,获得积分10
1秒前
领导范儿应助MoXian采纳,获得10
1秒前
3秒前
牛牛发布了新的文献求助20
3秒前
搞怪的靖发布了新的文献求助10
4秒前
LLLLLL完成签到,获得积分20
4秒前
4秒前
4秒前
Hello应助KRR0830采纳,获得10
5秒前
AC小白完成签到,获得积分10
6秒前
fantexi113发布了新的文献求助10
8秒前
kiwi完成签到,获得积分10
8秒前
感动归尘完成签到,获得积分10
9秒前
10秒前
chendumo完成签到,获得积分10
10秒前
10秒前
TinTin完成签到,获得积分20
11秒前
Airy完成签到,获得积分10
12秒前
奔跑石小猛完成签到,获得积分10
12秒前
秀丽烨霖应助看文献采纳,获得10
12秒前
镜花水月完成签到,获得积分10
12秒前
13秒前
天天玩完成签到,获得积分10
13秒前
友00000完成签到 ,获得积分10
13秒前
酷波er应助blablawindy采纳,获得30
14秒前
15秒前
寒月如雪发布了新的文献求助10
15秒前
16秒前
LLLLLL发布了新的文献求助10
16秒前
17秒前
18秒前
壮观寒荷发布了新的文献求助10
19秒前
zzz完成签到 ,获得积分10
19秒前
活力寻菱完成签到 ,获得积分10
19秒前
王则佼完成签到,获得积分10
20秒前
金角大王完成签到,获得积分20
21秒前
duchangzheng完成签到,获得积分10
21秒前
WWWater发布了新的文献求助10
21秒前
blablawindy完成签到,获得积分10
22秒前
124332发布了新的文献求助10
22秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 930
The Healthy Socialist Life in Maoist China 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3266571
求助须知:如何正确求助?哪些是违规求助? 2906288
关于积分的说明 8337415
捐赠科研通 2576718
什么是DOI,文献DOI怎么找? 1400683
科研通“疑难数据库(出版商)”最低求助积分说明 654844
邀请新用户注册赠送积分活动 633761