Pest-YOLO: Deep Image Mining and Multi-Feature Fusion for Real-Time Agriculture Pest Detection

计算机科学 卷积神经网络 有害生物分析 人工智能 特征(语言学) 特征提取 目标检测 模式识别(心理学) 数据挖掘 语言学 哲学 业务 营销
作者
Zhe Tang,Zhengyun Chen,Fang Qi,Lingyan Zhang,Shuhong Chen
标识
DOI:10.1109/icdm51629.2021.00169
摘要

The frequent outbreaks of agriculture pests have caused heavy losses in crop production. And the small size and high similarity of agricultural pests bring challenges to the prompt and accurate pest detection using imaging technologies. The key impetus of this paper is to achieve a good balance between efficiency and accuracy for pest detection on the basis of agricultural image data mining. This paper proposes Pest-YOLO which is a real-time agriculture pest detection method based on the improved convolutional neural network (CNN) and YOLOv4. First, a squeeze-and-excitation attention mechanism module is introduced to CNN for mining image data, extracting key features, and suppressing unrelated features. Then, a cross-stage multi-feature fusion method is designed to improve the structure of feature pyramid network and path aggregation network, thus enhancing the feature expressiveness of small targets like pests. Finally, our Pest-YOLO realizes end-to-end real-time pest detection with high accuracy based on improved CNN and YOLOv4. We evaluate the performance of our method on a typical large-scale pest dataset including 28k images and 24 classes. Experimental results demonstrate that our method outperforms the state-of-the-art solutions including Faster R-CNN and YOLO-based detectors, and achieves good performance with 71.6% mAP and 83.5% Recall. The proposed method is effective and applicable for accurate and real-time intelligent pest detection without expertise feature engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wtt123发布了新的文献求助10
1秒前
nkmenghan发布了新的文献求助10
1秒前
彭于晏应助啵子采纳,获得10
1秒前
流觞俊秀完成签到 ,获得积分10
1秒前
上官若男应助Eshujia采纳,获得10
1秒前
2秒前
浮游应助月蚀六花采纳,获得10
2秒前
2秒前
英俊的菲鹰完成签到,获得积分20
2秒前
中中中发布了新的文献求助10
2秒前
2秒前
2秒前
bhhyyy应助minsu采纳,获得10
3秒前
CodeCraft应助minsu采纳,获得10
3秒前
无私擎完成签到,获得积分10
3秒前
伍志伟发布了新的文献求助10
3秒前
3秒前
桐桐应助甜美冰蓝采纳,获得30
4秒前
4秒前
4秒前
万能图书馆应助37采纳,获得10
5秒前
5秒前
辞稚发布了新的文献求助10
5秒前
七七发布了新的文献求助10
6秒前
6秒前
6秒前
Ava应助纯情母蟑螂采纳,获得10
6秒前
旺旺完成签到 ,获得积分10
7秒前
7秒前
Lucas应助xiaohan采纳,获得10
7秒前
7秒前
982289172发布了新的文献求助10
8秒前
wtt123完成签到,获得积分10
8秒前
王金霞完成签到,获得积分10
8秒前
打打应助zhengzengpeng采纳,获得10
8秒前
111完成签到,获得积分10
8秒前
赘婿应助王泰一采纳,获得30
8秒前
八月中稿完成签到 ,获得积分10
9秒前
赘婿应助潇湘阁我爱吃采纳,获得10
9秒前
Gong发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5483532
求助须知:如何正确求助?哪些是违规求助? 4584237
关于积分的说明 14395715
捐赠科研通 4513936
什么是DOI,文献DOI怎么找? 2473733
邀请新用户注册赠送积分活动 1459777
关于科研通互助平台的介绍 1433177