Pest-YOLO: Deep Image Mining and Multi-Feature Fusion for Real-Time Agriculture Pest Detection

计算机科学 卷积神经网络 有害生物分析 人工智能 特征(语言学) 特征提取 目标检测 模式识别(心理学) 数据挖掘 语言学 哲学 业务 营销
作者
Zhe Tang,Zhengyun Chen,Fang Qi,Lingyan Zhang,Shuhong Chen
标识
DOI:10.1109/icdm51629.2021.00169
摘要

The frequent outbreaks of agriculture pests have caused heavy losses in crop production. And the small size and high similarity of agricultural pests bring challenges to the prompt and accurate pest detection using imaging technologies. The key impetus of this paper is to achieve a good balance between efficiency and accuracy for pest detection on the basis of agricultural image data mining. This paper proposes Pest-YOLO which is a real-time agriculture pest detection method based on the improved convolutional neural network (CNN) and YOLOv4. First, a squeeze-and-excitation attention mechanism module is introduced to CNN for mining image data, extracting key features, and suppressing unrelated features. Then, a cross-stage multi-feature fusion method is designed to improve the structure of feature pyramid network and path aggregation network, thus enhancing the feature expressiveness of small targets like pests. Finally, our Pest-YOLO realizes end-to-end real-time pest detection with high accuracy based on improved CNN and YOLOv4. We evaluate the performance of our method on a typical large-scale pest dataset including 28k images and 24 classes. Experimental results demonstrate that our method outperforms the state-of-the-art solutions including Faster R-CNN and YOLO-based detectors, and achieves good performance with 71.6% mAP and 83.5% Recall. The proposed method is effective and applicable for accurate and real-time intelligent pest detection without expertise feature engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到,获得积分10
刚刚
jelly应助琳琳采纳,获得20
刚刚
传奇3应助婷婷采纳,获得10
1秒前
李爱国应助现代的慕凝采纳,获得20
3秒前
土豆国王完成签到,获得积分10
3秒前
4秒前
4秒前
米卫兵_星完成签到 ,获得积分10
4秒前
天天快乐应助丁莞采纳,获得10
4秒前
5秒前
高贵宛海发布了新的文献求助10
6秒前
qq大魔王发布了新的文献求助10
6秒前
7秒前
Rita发布了新的文献求助10
7秒前
嘉麓发布了新的文献求助10
9秒前
娃娃哈发布了新的文献求助10
11秒前
12秒前
12秒前
土豆国王发布了新的文献求助10
12秒前
13秒前
杨怀托发布了新的文献求助10
13秒前
臭鸡发布了新的文献求助10
13秒前
记忆超群完成签到,获得积分10
14秒前
14秒前
wh完成签到 ,获得积分10
14秒前
14秒前
小杭76应助负责的弘文采纳,获得40
15秒前
焚天尘殇完成签到,获得积分10
15秒前
马志青完成签到,获得积分10
15秒前
婷婷发布了新的文献求助10
17秒前
云不归发布了新的文献求助10
17秒前
17秒前
18秒前
玛卡巴卡发布了新的文献求助10
18秒前
香蕉觅云应助健忘的元柏采纳,获得10
19秒前
19秒前
wanci应助阿政采纳,获得10
19秒前
Rla发布了新的文献求助10
19秒前
娃娃哈完成签到,获得积分10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5263923
求助须知:如何正确求助?哪些是违规求助? 4424277
关于积分的说明 13772673
捐赠科研通 4299346
什么是DOI,文献DOI怎么找? 2359021
邀请新用户注册赠送积分活动 1355330
关于科研通互助平台的介绍 1316589