重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Pest-YOLO: Deep Image Mining and Multi-Feature Fusion for Real-Time Agriculture Pest Detection

计算机科学 卷积神经网络 有害生物分析 人工智能 特征(语言学) 特征提取 目标检测 模式识别(心理学) 数据挖掘 语言学 哲学 业务 营销
作者
Zhe Tang,Zhengyun Chen,Fang Qi,Lingyan Zhang,Shuhong Chen
标识
DOI:10.1109/icdm51629.2021.00169
摘要

The frequent outbreaks of agriculture pests have caused heavy losses in crop production. And the small size and high similarity of agricultural pests bring challenges to the prompt and accurate pest detection using imaging technologies. The key impetus of this paper is to achieve a good balance between efficiency and accuracy for pest detection on the basis of agricultural image data mining. This paper proposes Pest-YOLO which is a real-time agriculture pest detection method based on the improved convolutional neural network (CNN) and YOLOv4. First, a squeeze-and-excitation attention mechanism module is introduced to CNN for mining image data, extracting key features, and suppressing unrelated features. Then, a cross-stage multi-feature fusion method is designed to improve the structure of feature pyramid network and path aggregation network, thus enhancing the feature expressiveness of small targets like pests. Finally, our Pest-YOLO realizes end-to-end real-time pest detection with high accuracy based on improved CNN and YOLOv4. We evaluate the performance of our method on a typical large-scale pest dataset including 28k images and 24 classes. Experimental results demonstrate that our method outperforms the state-of-the-art solutions including Faster R-CNN and YOLO-based detectors, and achieves good performance with 71.6% mAP and 83.5% Recall. The proposed method is effective and applicable for accurate and real-time intelligent pest detection without expertise feature engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jiaqi完成签到,获得积分20
刚刚
小蘑菇应助研友_ZlxK6Z采纳,获得10
刚刚
刚刚
yyy发布了新的文献求助10
1秒前
充电宝应助啊TiP采纳,获得10
1秒前
lbwnb2112完成签到,获得积分10
2秒前
3秒前
xiaowang完成签到,获得积分10
3秒前
秀秀粉完成签到,获得积分10
3秒前
3秒前
大方小松发布了新的文献求助10
3秒前
3秒前
晨芒发布了新的文献求助10
3秒前
4秒前
星辰大海应助merry2025采纳,获得10
4秒前
丘比特应助包宇采纳,获得10
4秒前
贤惠的小夏完成签到,获得积分10
4秒前
wangq完成签到,获得积分10
5秒前
林登万发布了新的文献求助10
5秒前
6秒前
科研的打工狗完成签到,获得积分10
6秒前
7秒前
长情篮球发布了新的文献求助10
7秒前
7秒前
852应助ljq采纳,获得10
8秒前
仰光发布了新的文献求助10
8秒前
1234完成签到 ,获得积分10
8秒前
领导范儿应助玲℃采纳,获得10
9秒前
赘婿应助luckyhan采纳,获得10
9秒前
9秒前
9秒前
无情的安蕾完成签到,获得积分10
9秒前
Garrette发布了新的文献求助10
10秒前
乐乐应助我是聪聪呦采纳,获得10
10秒前
11秒前
安静的寒蕾完成签到,获得积分10
11秒前
马伊发布了新的文献求助10
11秒前
11秒前
11秒前
NexusExplorer应助大反应釜采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466602
求助须知:如何正确求助?哪些是违规求助? 4570422
关于积分的说明 14325272
捐赠科研通 4496951
什么是DOI,文献DOI怎么找? 2463624
邀请新用户注册赠送积分活动 1452586
关于科研通互助平台的介绍 1427567