Pest-YOLO: Deep Image Mining and Multi-Feature Fusion for Real-Time Agriculture Pest Detection

计算机科学 卷积神经网络 有害生物分析 人工智能 特征(语言学) 特征提取 目标检测 模式识别(心理学) 数据挖掘 语言学 哲学 业务 营销
作者
Zhe Tang,Zhengyun Chen,Fang Qi,Lingyan Zhang,Shuhong Chen
标识
DOI:10.1109/icdm51629.2021.00169
摘要

The frequent outbreaks of agriculture pests have caused heavy losses in crop production. And the small size and high similarity of agricultural pests bring challenges to the prompt and accurate pest detection using imaging technologies. The key impetus of this paper is to achieve a good balance between efficiency and accuracy for pest detection on the basis of agricultural image data mining. This paper proposes Pest-YOLO which is a real-time agriculture pest detection method based on the improved convolutional neural network (CNN) and YOLOv4. First, a squeeze-and-excitation attention mechanism module is introduced to CNN for mining image data, extracting key features, and suppressing unrelated features. Then, a cross-stage multi-feature fusion method is designed to improve the structure of feature pyramid network and path aggregation network, thus enhancing the feature expressiveness of small targets like pests. Finally, our Pest-YOLO realizes end-to-end real-time pest detection with high accuracy based on improved CNN and YOLOv4. We evaluate the performance of our method on a typical large-scale pest dataset including 28k images and 24 classes. Experimental results demonstrate that our method outperforms the state-of-the-art solutions including Faster R-CNN and YOLO-based detectors, and achieves good performance with 71.6% mAP and 83.5% Recall. The proposed method is effective and applicable for accurate and real-time intelligent pest detection without expertise feature engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yy完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
dengyan完成签到,获得积分10
3秒前
CodeCraft应助汪汪采纳,获得10
3秒前
我是老大应助刻苦的书竹采纳,获得10
4秒前
智慧爷爷发布了新的文献求助10
4秒前
酷波er应助lw777采纳,获得10
4秒前
岁月如歌发布了新的文献求助10
6秒前
bin完成签到,获得积分10
8秒前
8秒前
很好完成签到,获得积分10
9秒前
小郝已读博完成签到 ,获得积分10
9秒前
9秒前
Self-made完成签到,获得积分10
9秒前
10秒前
11秒前
12秒前
岁月如歌完成签到,获得积分10
13秒前
14秒前
joey完成签到,获得积分10
15秒前
wei完成签到 ,获得积分10
16秒前
miaojuly发布了新的文献求助10
17秒前
17秒前
研友_LXjjOZ发布了新的文献求助150
17秒前
18秒前
19秒前
20秒前
坚定馒头完成签到,获得积分10
20秒前
21秒前
21秒前
星星应助科研通管家采纳,获得30
23秒前
y924758705完成签到,获得积分20
23秒前
打打应助科研通管家采纳,获得10
23秒前
坦率的匪应助科研通管家采纳,获得10
23秒前
烟花应助科研通管家采纳,获得10
23秒前
上官若男应助科研通管家采纳,获得10
23秒前
隐形曼青应助科研通管家采纳,获得10
23秒前
NexusExplorer应助科研通管家采纳,获得10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988868
求助须知:如何正确求助?哪些是违规求助? 3531255
关于积分的说明 11253071
捐赠科研通 3269858
什么是DOI,文献DOI怎么找? 1804822
邀请新用户注册赠送积分活动 881994
科研通“疑难数据库(出版商)”最低求助积分说明 809035