Pest-YOLO: Deep Image Mining and Multi-Feature Fusion for Real-Time Agriculture Pest Detection

计算机科学 卷积神经网络 有害生物分析 人工智能 特征(语言学) 特征提取 目标检测 模式识别(心理学) 数据挖掘 语言学 哲学 业务 营销
作者
Zhe Tang,Zhengyun Chen,Fang Qi,Lingyan Zhang,Shuhong Chen
标识
DOI:10.1109/icdm51629.2021.00169
摘要

The frequent outbreaks of agriculture pests have caused heavy losses in crop production. And the small size and high similarity of agricultural pests bring challenges to the prompt and accurate pest detection using imaging technologies. The key impetus of this paper is to achieve a good balance between efficiency and accuracy for pest detection on the basis of agricultural image data mining. This paper proposes Pest-YOLO which is a real-time agriculture pest detection method based on the improved convolutional neural network (CNN) and YOLOv4. First, a squeeze-and-excitation attention mechanism module is introduced to CNN for mining image data, extracting key features, and suppressing unrelated features. Then, a cross-stage multi-feature fusion method is designed to improve the structure of feature pyramid network and path aggregation network, thus enhancing the feature expressiveness of small targets like pests. Finally, our Pest-YOLO realizes end-to-end real-time pest detection with high accuracy based on improved CNN and YOLOv4. We evaluate the performance of our method on a typical large-scale pest dataset including 28k images and 24 classes. Experimental results demonstrate that our method outperforms the state-of-the-art solutions including Faster R-CNN and YOLO-based detectors, and achieves good performance with 71.6% mAP and 83.5% Recall. The proposed method is effective and applicable for accurate and real-time intelligent pest detection without expertise feature engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘同心完成签到,获得积分10
刚刚
1秒前
Jasper应助养乐多采纳,获得20
1秒前
科研通AI6应助Andy采纳,获得10
2秒前
深情安青应助轻松的囧采纳,获得10
2秒前
FashionBoy应助幸福念柏采纳,获得30
2秒前
2秒前
古月完成签到 ,获得积分10
3秒前
3秒前
DreamRunner0410完成签到 ,获得积分10
4秒前
4秒前
Orange应助许思真采纳,获得10
4秒前
顾盛男发布了新的文献求助10
5秒前
5秒前
6秒前
枕边人完成签到 ,获得积分10
6秒前
唠叨的凌雪完成签到,获得积分10
6秒前
笨笨完成签到,获得积分10
6秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
乐观尔容发布了新的文献求助10
10秒前
10秒前
大蜀山应助景飞丹采纳,获得10
11秒前
韩东华发布了新的文献求助10
11秒前
kuzzi发布了新的文献求助10
12秒前
Windsyang完成签到,获得积分10
12秒前
12秒前
12秒前
13秒前
13秒前
科研通AI6应助洱东越岳鱼采纳,获得10
13秒前
13秒前
图图是秋阳完成签到,获得积分20
14秒前
14秒前
15秒前
养乐多完成签到,获得积分10
15秒前
敏玥发布了新的文献求助10
15秒前
的的完成签到,获得积分10
16秒前
16秒前
_u_ii完成签到,获得积分10
17秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 941
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5443159
求助须知:如何正确求助?哪些是违规求助? 4553068
关于积分的说明 14240935
捐赠科研通 4474702
什么是DOI,文献DOI怎么找? 2452098
邀请新用户注册赠送积分活动 1443060
关于科研通互助平台的介绍 1418705