生物
鹅
胚胎
病毒学
系统发育树
病毒
爆发
基因组
细小病毒
效价
同源(生物学)
遗传学
基因
古生物学
作者
Jie Zhu,Yi Yang,Xiaohui Zhang,Bixia Chen,Guanxing Liu,Endong Bao
摘要
Outbreaks of short beak dwarf syndrome caused by novel goose parvovirus (NGPV) have been prevalent in China since 2015, resulting in a high mortality rate of ducks. Herein we evaluated differences between two NGPV strains: Muscovy duck-origin (AH190917-RP: MD17) and Cherry Valley duck-origin (JS191021-RP: CVD21) NGPV. Both of them showed certain level of pathogenicity to primary duck embryo fibroblasts, Cherry Valley duck embryos and ducklings. CVD21 showed comparatively stronger pathogenicity than MD17. Only CVD21 caused obvious cytopathic effect (CPE), characterized by cell shedding; further, the virus titer of MD17 and CVD21 was 102.571 ELD50 (i.e. median embryo lethal dose)/0.2 ml and 106.156 ELD50 /0.2 ml, respectively, and the mortality rate of CVD21- and MD17-infected Cherry Valley ducklings was 100% and 80%, respectively. In addition, CVD21 had a greater influence on the growth and development of ducklings. Furthermore, we found that MD17 could infect Muscovy duck embryos and produce lesions similar to Cherry Valley duck embryos, but it could not infect Muscovy duck embryo fibroblasts (MDEFs,) and Muscovy ducklings. MDV21 had no infection to MDEFs, Muscovy duck embryo and Muscovy ducklings. We then sequenced the complete genome of the two isolates to enable genomic characterization. The complete genome of MD17 and CVD21 was 5046 and 5050 nucleotides in length, respectively. Nucleotide alignment, amino acid analysis and phylogenetic tree analysis revealed that MD17 showed higher homology to goose parvovirus (GPV), while CVD21 demonstrated stronger similarity with NGPV. Moreover, the two isolates shared 95.8% homology, with encoded proteins showing multiple amino acid variations. Our findings indicate that Muscovy ducks seem to have played a crucial role in the evolution of GPV to NGPV. We believe that our data should serve as a foundation for further studying the genetic evolution of waterfowl parvoviruses and their pathogenic mechanisms.
科研通智能强力驱动
Strongly Powered by AbleSci AI