法拉第效率
共沉淀
阴极
离子
锰
扩散
材料科学
锂(药物)
化学工程
相(物质)
容量损失
淡出
化学
纳米技术
电极
无机化学
电化学
冶金
计算机科学
热力学
有机化学
物理化学
医学
内分泌学
工程类
物理
操作系统
作者
Chao Huang,Zhijie Wang,Hao Wang,Di Huang,Jianwei Zhao,Shi‐Xi Zhao
标识
DOI:10.1016/j.jpowsour.2022.231437
摘要
Lithium-rich manganese-based oxides (LRMO) are very promising cathode materials for next-generation high-energy-density Li-ion batteries, but their application is hindered by the inherent low initial Coulombic efficiency (ICE) (<80%), poor cycling stability, and rate performance. Herein, we solve these bottlenecks via in-situ constructing a P2-type Na0.66MnO2 phase on the surface of LRMO particles (LRMO/P2) using a two-step coprecipitation and one-step co-firing strategy. The P2-type Na0.66MnO2 phase offers extra ion-store sites for LRMO particles to offset the irreversible capacity loss in the first cycle, which improves the ICE to above 92%. It can also provide a fast ion-diffusion channel with a low Li-ion diffusion energy barrier, which effectively raises the discharge capacity. The developed LRMO/P2 cathode delivers a high reversible capacity of 243 mAh·g−1 at 1 C with a retention of 80% after 240 cycles. This works gives new insights into developing high-performance cathode materials for high-energy-density batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI