已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

SSR-HEF: Crowd Counting With Multiscale Semantic Refining and Hard Example Focusing

计算机科学 水准点(测量) 光学(聚焦) 任务(项目管理) 人工智能 比例(比率) 深度学习 机器学习 欧几里德距离 大地测量学 量子力学 光学 物理 经济 管理 地理
作者
Jiwei Chen,KeWei Wang,Wen Su,Zengfu Wang
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:18 (10): 6547-6557 被引量:4
标识
DOI:10.1109/tii.2022.3160634
摘要

Crowd counting based on density maps is generally regarded as a regression task.Deep learning is used to learn the mapping between image content and crowd density distribution. Although great success has been achieved, some pedestrians far away from the camera are difficult to be detected. And the number of hard examples is often larger. Existing methods with simple Euclidean distance algorithm indiscriminately optimize the hard and easy examples so that the densities of hard examples are usually incorrectly predicted to be lower or even zero, which results in large counting errors. To address this problem, we are the first to propose the Hard Example Focusing(HEF) algorithm for the regression task of crowd counting. The HEF algorithm makes our model rapidly focus on hard examples by attenuating the contribution of easy examples.Then higher importance will be given to the hard examples with wrong estimations. Moreover, the scale variations in crowd scenes are large, and the scale annotations are labor-intensive and expensive. By proposing a multi-Scale Semantic Refining (SSR) strategy, lower layers of our model can break through the limitation of deep learning to capture semantic features of different scales to sufficiently deal with the scale variation. We perform extensive experiments on six benchmark datasets to verify the proposed method. Results indicate the superiority of our proposed method over the state-of-the-art methods. Moreover, our designed model is smaller and faster.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小叮当发布了新的文献求助10
刚刚
2秒前
科研通AI2S应助liuynnn采纳,获得10
3秒前
4秒前
俭朴夜雪完成签到,获得积分10
7秒前
我是老大应助weiminghao采纳,获得30
7秒前
慕青应助禾沐采纳,获得10
8秒前
8秒前
深情安青应助echoMe采纳,获得10
9秒前
9秒前
西瓜完成签到 ,获得积分10
11秒前
祎橘发布了新的文献求助10
11秒前
14秒前
15秒前
16秒前
wg言关注了科研通微信公众号
16秒前
研友_VZG7GZ应助璇子采纳,获得10
18秒前
金平卢仙发布了新的文献求助10
19秒前
小吴同学完成签到,获得积分10
20秒前
23秒前
顺心凡之完成签到,获得积分10
24秒前
Xieyusen完成签到,获得积分10
25秒前
weiminghao完成签到,获得积分10
27秒前
31秒前
香蕉觅云应助樊柔采纳,获得10
31秒前
31秒前
32秒前
32秒前
34秒前
firedouble发布了新的文献求助10
35秒前
36秒前
Promise发布了新的文献求助10
36秒前
37秒前
祎橘完成签到 ,获得积分10
39秒前
40秒前
niubing发布了新的文献求助10
41秒前
南桑发布了新的文献求助10
41秒前
42秒前
liuynnn发布了新的文献求助10
43秒前
高分求助中
Drug Prescribing in Renal Failure: Dosing Guidelines for Adults and Children 5th Edition 2000
IZELTABART TAPATANSINE 500
Where and how to use plate heat exchangers 500
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Armour of the english knight 1400-1450 300
Handbook of Laboratory Animal Science 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3712684
求助须知:如何正确求助?哪些是违规求助? 3260800
关于积分的说明 9915101
捐赠科研通 2974358
什么是DOI,文献DOI怎么找? 1630898
邀请新用户注册赠送积分活动 773751
科研通“疑难数据库(出版商)”最低求助积分说明 744404