A Data-Adaptive Loss Function for Incomplete Data and Incremental Learning in Semantic Image Segmentation

计算机科学 卷积神经网络 人工智能 深度学习 机器学习 基本事实 图像(数学) 分割 功能(生物学) 图像分割 上下文图像分类 医学影像学 领域(数学) 数据建模 领域(数学分析) 数据挖掘 模式识别(心理学) 数学分析 数学 数据库 进化生物学 纯数学 生物
作者
Minh H. Vu,Gabriella Norman,Tufve Nyholm,Tommy Löfstedt
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (6): 1320-1330 被引量:11
标识
DOI:10.1109/tmi.2021.3139161
摘要

In the last years, deep learning has dramatically improved the performances in a variety of medical image analysis applications. Among different types of deep learning models, convolutional neural networks have been among the most successful and they have been used in many applications in medical imaging. Training deep convolutional neural networks often requires large amounts of image data to generalize well to new unseen images. It is often time-consuming and expensive to collect large amounts of data in the medical image domain due to expensive imaging systems, and the need for experts to manually make ground truth annotations. A potential problem arises if new structures are added when a decision support system is already deployed and in use. Since the field of radiation therapy is constantly developing, the new structures would also have to be covered by the decision support system. In the present work, we propose a novel loss function to solve multiple problems: imbalanced datasets, partially-labeled data, and incremental learning. The proposed loss function adapts to the available data in order to utilize all available data, even when some have missing annotations. We demonstrate that the proposed loss function also works well in an incremental learning setting, where an existing model is easily adapted to semi-automatically incorporate delineations of new organs when they appear. Experiments on a large in-house dataset show that the proposed method performs on par with baseline models, while greatly reducing the training time and eliminating the hassle of maintaining multiple models in practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苑小苑应助麦客采纳,获得10
刚刚
酷波er应助黄林轩采纳,获得10
刚刚
Akim应助不潮不用花钱采纳,获得10
1秒前
安静发布了新的文献求助10
1秒前
爸爸的伞完成签到,获得积分10
1秒前
若尘发布了新的文献求助10
1秒前
1秒前
zhaozhaozhao完成签到,获得积分10
2秒前
王大壮完成签到,获得积分10
2秒前
3秒前
4秒前
4秒前
heheda完成签到 ,获得积分10
5秒前
5秒前
追逐的疯完成签到,获得积分10
5秒前
6秒前
感动煎饼发布了新的文献求助10
7秒前
隐形曼青应助安静采纳,获得10
8秒前
zhaozhaozhao发布了新的文献求助10
9秒前
9秒前
an发布了新的文献求助10
9秒前
哈哈哈发布了新的文献求助30
10秒前
12秒前
12345678完成签到,获得积分10
12秒前
SYH发布了新的文献求助10
12秒前
13秒前
小夫完成签到,获得积分10
14秒前
斯文败类应助飞鱼采纳,获得10
14秒前
ran完成签到,获得积分10
15秒前
机灵柚子应助兴奋千兰采纳,获得10
15秒前
安静完成签到,获得积分20
15秒前
16秒前
哈哈哈完成签到,获得积分10
16秒前
汉堡包应助熊二浪采纳,获得10
17秒前
18秒前
yang完成签到,获得积分10
18秒前
大模型应助平凡的世界采纳,获得10
18秒前
19秒前
19秒前
星辰大海应助Paoaaa采纳,获得10
20秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738003
求助须知:如何正确求助?哪些是违规求助? 3281524
关于积分的说明 10025807
捐赠科研通 2998287
什么是DOI,文献DOI怎么找? 1645171
邀请新用户注册赠送积分活动 782646
科研通“疑难数据库(出版商)”最低求助积分说明 749882