A Machine Learning Model Based on PET/CT Radiomics and Clinical Characteristics Predicts Tumor Immune Profiles in Non-Small Cell Lung Cancer: A Retrospective Multicohort Study

无线电技术 医学 列线图 肺癌 免疫疗法 队列 接收机工作特性 肿瘤科 内科学 癌症 回顾性队列研究 放射科
作者
Haipeng Tong,Jinju Sun,Jingqin Fang,Mi Zhang,Huan Liu,Renxiang Xia,Weicheng Zhou,Kaijun Liu,Xiaohong Chen
出处
期刊:Frontiers in Immunology [Frontiers Media SA]
卷期号:13 被引量:56
标识
DOI:10.3389/fimmu.2022.859323
摘要

Background The tumor immune microenvironment (TIME) phenotypes have been reported to mainly impact the efficacy of immunotherapy. Given the increasing use of immunotherapy in cancers, knowing an individual’s TIME phenotypes could be helpful in screening patients who are more likely to respond to immunotherapy. Our study intended to establish, validate, and apply a machine learning model to predict TIME profiles in non-small cell lung cancer (NSCLC) by using 18 F-FDG PET/CT radiomics and clinical characteristics. Methods The RNA-seq data of 1145 NSCLC patients from The Cancer Genome Atlas (TCGA) cohort were analyzed. Then, 221 NSCLC patients from Daping Hospital (DPH) cohort received 18 F-FDG PET/CT scans before treatment and CD8 expression of the tumor samples were tested. The Artificial Intelligence Kit software was used to extract radiomic features of PET/CT images and develop a radiomics signature. The models were established by radiomics, clinical features, and radiomics-clinical combination, respectively, the performance of which was calculated by receiver operating curves (ROCs) and compared by DeLong test. Moreover, based on radiomics score (Rad-score) and clinical features, a nomogram was established. Finally, we applied the combined model to evaluate TIME phenotypes of NSCLC patients in The Cancer Imaging Archive (TCIA) cohort (n = 39). Results TCGA data showed CD8 expression could represent the TIME profiles in NSCLC. In DPH cohort, PET/CT radiomics model outperformed CT model (AUC: 0.907 vs. 0.861, P = 0.0314) to predict CD8 expression. Further, PET/CT radiomics-clinical combined model (AUC = 0.932) outperformed PET/CT radiomics model (AUC = 0.907, P = 0.0326) or clinical model (AUC = 0.868, P = 0.0036) to predict CD8 expression. In the TCIA cohort, the predicted CD8-high group had significantly higher immune scores and more activated immune pathways than the predicted CD8-low group ( P = 0.0421). Conclusion Our study indicates that 18 F-FDG PET/CT radiomics-clinical combined model could be a clinically practical method to non-invasively detect the tumor immune status in NSCLCs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助10
4秒前
共享精神应助夜轩岚采纳,获得30
4秒前
zhang完成签到 ,获得积分10
6秒前
8秒前
燕子完成签到,获得积分10
9秒前
12秒前
zhuangbaobao发布了新的文献求助10
12秒前
大知闲闲完成签到,获得积分10
13秒前
bono完成签到 ,获得积分10
14秒前
15秒前
17秒前
坚强飞兰完成签到 ,获得积分10
18秒前
安江涛完成签到,获得积分10
20秒前
bigpluto完成签到,获得积分10
23秒前
科研通AI6应助书颜采纳,获得10
23秒前
yuzhanli完成签到,获得积分10
25秒前
独特的沛凝完成签到,获得积分10
26秒前
wanci应助amin采纳,获得10
29秒前
zhuangbaobao发布了新的文献求助10
30秒前
32秒前
无心的天真完成签到 ,获得积分10
34秒前
知性的夏槐完成签到 ,获得积分10
36秒前
37秒前
41秒前
42秒前
可靠之玉完成签到,获得积分10
43秒前
45秒前
amin发布了新的文献求助10
48秒前
身强力壮运气好完成签到,获得积分10
48秒前
茅十八完成签到,获得积分10
48秒前
lin发布了新的文献求助10
49秒前
时代更迭完成签到 ,获得积分10
53秒前
从容的盼晴完成签到,获得积分10
54秒前
奋斗雅香完成签到 ,获得积分10
54秒前
橙汁完成签到,获得积分10
57秒前
JIECHENG完成签到 ,获得积分10
59秒前
59秒前
称心乐枫完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539237
求助须知:如何正确求助?哪些是违规求助? 4625983
关于积分的说明 14597289
捐赠科研通 4566829
什么是DOI,文献DOI怎么找? 2503639
邀请新用户注册赠送积分活动 1481565
关于科研通互助平台的介绍 1453115