亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Machine Learning Model Based on PET/CT Radiomics and Clinical Characteristics Predicts Tumor Immune Profiles in Non-Small Cell Lung Cancer: A Retrospective Multicohort Study

无线电技术 医学 列线图 肺癌 免疫疗法 队列 接收机工作特性 肿瘤科 内科学 癌症 回顾性队列研究 放射科
作者
Haipeng Tong,Jinju Sun,Jingqin Fang,Mi Zhang,Huan Liu,Renxiang Xia,Weicheng Zhou,Kaijun Liu,Xiaohong Chen
出处
期刊:Frontiers in Immunology [Frontiers Media]
卷期号:13 被引量:56
标识
DOI:10.3389/fimmu.2022.859323
摘要

Background The tumor immune microenvironment (TIME) phenotypes have been reported to mainly impact the efficacy of immunotherapy. Given the increasing use of immunotherapy in cancers, knowing an individual’s TIME phenotypes could be helpful in screening patients who are more likely to respond to immunotherapy. Our study intended to establish, validate, and apply a machine learning model to predict TIME profiles in non-small cell lung cancer (NSCLC) by using 18 F-FDG PET/CT radiomics and clinical characteristics. Methods The RNA-seq data of 1145 NSCLC patients from The Cancer Genome Atlas (TCGA) cohort were analyzed. Then, 221 NSCLC patients from Daping Hospital (DPH) cohort received 18 F-FDG PET/CT scans before treatment and CD8 expression of the tumor samples were tested. The Artificial Intelligence Kit software was used to extract radiomic features of PET/CT images and develop a radiomics signature. The models were established by radiomics, clinical features, and radiomics-clinical combination, respectively, the performance of which was calculated by receiver operating curves (ROCs) and compared by DeLong test. Moreover, based on radiomics score (Rad-score) and clinical features, a nomogram was established. Finally, we applied the combined model to evaluate TIME phenotypes of NSCLC patients in The Cancer Imaging Archive (TCIA) cohort (n = 39). Results TCGA data showed CD8 expression could represent the TIME profiles in NSCLC. In DPH cohort, PET/CT radiomics model outperformed CT model (AUC: 0.907 vs. 0.861, P = 0.0314) to predict CD8 expression. Further, PET/CT radiomics-clinical combined model (AUC = 0.932) outperformed PET/CT radiomics model (AUC = 0.907, P = 0.0326) or clinical model (AUC = 0.868, P = 0.0036) to predict CD8 expression. In the TCIA cohort, the predicted CD8-high group had significantly higher immune scores and more activated immune pathways than the predicted CD8-low group ( P = 0.0421). Conclusion Our study indicates that 18 F-FDG PET/CT radiomics-clinical combined model could be a clinically practical method to non-invasively detect the tumor immune status in NSCLCs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
摇摇奶昔完成签到,获得积分20
7秒前
Everything发布了新的文献求助10
8秒前
田様应助科研通管家采纳,获得10
30秒前
yx_cheng应助科研通管家采纳,获得10
30秒前
量子星尘发布了新的文献求助200
1分钟前
Everything完成签到,获得积分10
1分钟前
像个间谍发布了新的文献求助10
1分钟前
1分钟前
清风明月完成签到 ,获得积分10
1分钟前
比比谁的速度快应助Zephyr采纳,获得200
2分钟前
yx_cheng应助科研通管家采纳,获得10
2分钟前
2分钟前
跳跃毒娘发布了新的文献求助10
2分钟前
充电宝应助风中的飞机采纳,获得10
2分钟前
尘远知山静完成签到 ,获得积分10
2分钟前
haprier完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
lxh发布了新的文献求助10
3分钟前
李健应助lxh采纳,获得10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
杨柳发布了新的文献求助10
4分钟前
yx_cheng应助科研通管家采纳,获得10
4分钟前
桦奕兮完成签到 ,获得积分10
4分钟前
像个间谍完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
思源应助杨柳采纳,获得10
4分钟前
Alger发布了新的文献求助10
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
ZYN完成签到 ,获得积分10
6分钟前
汉堡包应助科研通管家采纳,获得10
6分钟前
laity完成签到 ,获得积分10
6分钟前
Eileen发布了新的文献求助20
6分钟前
无花果应助猕猴桃采纳,获得30
6分钟前
善学以致用应助Eileen采纳,获得10
6分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008151
求助须知:如何正确求助?哪些是违规求助? 3547956
关于积分的说明 11298612
捐赠科研通 3282865
什么是DOI,文献DOI怎么找? 1810219
邀请新用户注册赠送积分活动 885957
科研通“疑难数据库(出版商)”最低求助积分说明 811188