A Machine Learning Model Based on PET/CT Radiomics and Clinical Characteristics Predicts Tumor Immune Profiles in Non-Small Cell Lung Cancer: A Retrospective Multicohort Study

无线电技术 医学 列线图 肺癌 免疫疗法 队列 接收机工作特性 肿瘤科 内科学 癌症 回顾性队列研究 放射科
作者
Haipeng Tong,Jinju Sun,Jingqin Fang,Mi Zhang,Huan Liu,Renxiang Xia,Weicheng Zhou,Kaijun Liu,Xiaohong Chen
出处
期刊:Frontiers in Immunology [Frontiers Media SA]
卷期号:13 被引量:56
标识
DOI:10.3389/fimmu.2022.859323
摘要

Background The tumor immune microenvironment (TIME) phenotypes have been reported to mainly impact the efficacy of immunotherapy. Given the increasing use of immunotherapy in cancers, knowing an individual’s TIME phenotypes could be helpful in screening patients who are more likely to respond to immunotherapy. Our study intended to establish, validate, and apply a machine learning model to predict TIME profiles in non-small cell lung cancer (NSCLC) by using 18 F-FDG PET/CT radiomics and clinical characteristics. Methods The RNA-seq data of 1145 NSCLC patients from The Cancer Genome Atlas (TCGA) cohort were analyzed. Then, 221 NSCLC patients from Daping Hospital (DPH) cohort received 18 F-FDG PET/CT scans before treatment and CD8 expression of the tumor samples were tested. The Artificial Intelligence Kit software was used to extract radiomic features of PET/CT images and develop a radiomics signature. The models were established by radiomics, clinical features, and radiomics-clinical combination, respectively, the performance of which was calculated by receiver operating curves (ROCs) and compared by DeLong test. Moreover, based on radiomics score (Rad-score) and clinical features, a nomogram was established. Finally, we applied the combined model to evaluate TIME phenotypes of NSCLC patients in The Cancer Imaging Archive (TCIA) cohort (n = 39). Results TCGA data showed CD8 expression could represent the TIME profiles in NSCLC. In DPH cohort, PET/CT radiomics model outperformed CT model (AUC: 0.907 vs. 0.861, P = 0.0314) to predict CD8 expression. Further, PET/CT radiomics-clinical combined model (AUC = 0.932) outperformed PET/CT radiomics model (AUC = 0.907, P = 0.0326) or clinical model (AUC = 0.868, P = 0.0036) to predict CD8 expression. In the TCIA cohort, the predicted CD8-high group had significantly higher immune scores and more activated immune pathways than the predicted CD8-low group ( P = 0.0421). Conclusion Our study indicates that 18 F-FDG PET/CT radiomics-clinical combined model could be a clinically practical method to non-invasively detect the tumor immune status in NSCLCs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孙浩洋完成签到,获得积分10
1秒前
1秒前
友好惜雪完成签到 ,获得积分10
1秒前
SciGPT应助mumu采纳,获得10
2秒前
2秒前
3秒前
FashionBoy应助王剑采纳,获得10
3秒前
小二郎应助LXY采纳,获得10
4秒前
5秒前
君君发布了新的文献求助10
5秒前
健壮魂幽完成签到,获得积分20
5秒前
李爱国应助thomas采纳,获得10
6秒前
正直沧海发布了新的文献求助10
6秒前
21发布了新的文献求助10
8秒前
8秒前
Akim应助最好的我们采纳,获得10
8秒前
8R60d8完成签到,获得积分0
8秒前
xz发布了新的文献求助10
9秒前
华仔应助Felixsun采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
任婷发布了新的文献求助10
11秒前
任婷发布了新的文献求助10
11秒前
任婷发布了新的文献求助10
11秒前
RedBoy发布了新的文献求助10
11秒前
正直沧海完成签到,获得积分20
13秒前
thomas完成签到,获得积分10
13秒前
无花果应助听见采纳,获得10
13秒前
RSC发布了新的文献求助10
13秒前
kaerless发布了新的文献求助10
13秒前
14秒前
科研笨猪完成签到,获得积分10
14秒前
洞若观烟火完成签到,获得积分10
16秒前
pp发布了新的文献求助10
18秒前
林勇德完成签到,获得积分10
18秒前
19秒前
20秒前
20秒前
senli2018发布了新的文献求助10
20秒前
22秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5453924
求助须知:如何正确求助?哪些是违规求助? 4561398
关于积分的说明 14282445
捐赠科研通 4485367
什么是DOI,文献DOI怎么找? 2456697
邀请新用户注册赠送积分活动 1447383
关于科研通互助平台的介绍 1422701