A Machine Learning Model Based on PET/CT Radiomics and Clinical Characteristics Predicts Tumor Immune Profiles in Non-Small Cell Lung Cancer: A Retrospective Multicohort Study

无线电技术 医学 列线图 肺癌 免疫疗法 队列 接收机工作特性 肿瘤科 内科学 癌症 回顾性队列研究 放射科
作者
Haipeng Tong,Jinju Sun,Jingqin Fang,Mi Zhang,Huan Liu,Renxiang Xia,Weicheng Zhou,Kaijun Liu,Xiaohong Chen
出处
期刊:Frontiers in Immunology [Frontiers Media]
卷期号:13 被引量:56
标识
DOI:10.3389/fimmu.2022.859323
摘要

Background The tumor immune microenvironment (TIME) phenotypes have been reported to mainly impact the efficacy of immunotherapy. Given the increasing use of immunotherapy in cancers, knowing an individual’s TIME phenotypes could be helpful in screening patients who are more likely to respond to immunotherapy. Our study intended to establish, validate, and apply a machine learning model to predict TIME profiles in non-small cell lung cancer (NSCLC) by using 18 F-FDG PET/CT radiomics and clinical characteristics. Methods The RNA-seq data of 1145 NSCLC patients from The Cancer Genome Atlas (TCGA) cohort were analyzed. Then, 221 NSCLC patients from Daping Hospital (DPH) cohort received 18 F-FDG PET/CT scans before treatment and CD8 expression of the tumor samples were tested. The Artificial Intelligence Kit software was used to extract radiomic features of PET/CT images and develop a radiomics signature. The models were established by radiomics, clinical features, and radiomics-clinical combination, respectively, the performance of which was calculated by receiver operating curves (ROCs) and compared by DeLong test. Moreover, based on radiomics score (Rad-score) and clinical features, a nomogram was established. Finally, we applied the combined model to evaluate TIME phenotypes of NSCLC patients in The Cancer Imaging Archive (TCIA) cohort (n = 39). Results TCGA data showed CD8 expression could represent the TIME profiles in NSCLC. In DPH cohort, PET/CT radiomics model outperformed CT model (AUC: 0.907 vs. 0.861, P = 0.0314) to predict CD8 expression. Further, PET/CT radiomics-clinical combined model (AUC = 0.932) outperformed PET/CT radiomics model (AUC = 0.907, P = 0.0326) or clinical model (AUC = 0.868, P = 0.0036) to predict CD8 expression. In the TCIA cohort, the predicted CD8-high group had significantly higher immune scores and more activated immune pathways than the predicted CD8-low group ( P = 0.0421). Conclusion Our study indicates that 18 F-FDG PET/CT radiomics-clinical combined model could be a clinically practical method to non-invasively detect the tumor immune status in NSCLCs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助凡凡采纳,获得10
1秒前
2秒前
思源应助哈哈采纳,获得10
2秒前
3秒前
李翔完成签到 ,获得积分20
3秒前
快乐科研完成签到,获得积分10
3秒前
YingyingFan完成签到,获得积分10
4秒前
汉堡包应助傻傻的磬采纳,获得10
5秒前
5秒前
6秒前
liumou发布了新的文献求助10
7秒前
猪猪hero发布了新的文献求助10
7秒前
快乐科研发布了新的文献求助10
8秒前
8秒前
幽默鱼完成签到,获得积分10
9秒前
义气飞机完成签到,获得积分10
11秒前
12秒前
13秒前
14秒前
13728891737发布了新的文献求助20
14秒前
喜羊羊完成签到,获得积分10
15秒前
hhh完成签到,获得积分10
15秒前
大模型应助ytxwz采纳,获得10
17秒前
ding应助随随风采纳,获得10
17秒前
一碗白米饭orz完成签到 ,获得积分10
18秒前
Poker发布了新的文献求助10
18秒前
19秒前
linkman发布了新的文献求助10
19秒前
李萌发布了新的文献求助20
19秒前
多喝岩浆完成签到,获得积分10
21秒前
彭于晏应助聪明伊采纳,获得10
22秒前
无花果应助朴实蛋挞采纳,获得10
23秒前
24秒前
25秒前
27秒前
深情的鞯完成签到,获得积分10
28秒前
一二完成签到,获得积分10
28秒前
和谐的寄凡完成签到,获得积分10
28秒前
轻狂书生发布了新的文献求助10
29秒前
凡凡发布了新的文献求助10
29秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5203698
求助须知:如何正确求助?哪些是违规求助? 4383107
关于积分的说明 13648087
捐赠科研通 4240691
什么是DOI,文献DOI怎么找? 2326584
邀请新用户注册赠送积分活动 1324220
关于科研通互助平台的介绍 1276296