A Machine Learning Model Based on PET/CT Radiomics and Clinical Characteristics Predicts Tumor Immune Profiles in Non-Small Cell Lung Cancer: A Retrospective Multicohort Study

无线电技术 医学 列线图 肺癌 免疫疗法 队列 接收机工作特性 肿瘤科 内科学 癌症 回顾性队列研究 放射科
作者
Haipeng Tong,Jinju Sun,Jingqin Fang,Mi Zhang,Huan Liu,Renxiang Xia,Weicheng Zhou,Kaijun Liu,Xiao Chen
出处
期刊:Frontiers in Immunology [Frontiers Media SA]
卷期号:13 被引量:21
标识
DOI:10.3389/fimmu.2022.859323
摘要

The tumor immune microenvironment (TIME) phenotypes have been reported to mainly impact the efficacy of immunotherapy. Given the increasing use of immunotherapy in cancers, knowing an individual's TIME phenotypes could be helpful in screening patients who are more likely to respond to immunotherapy. Our study intended to establish, validate, and apply a machine learning model to predict TIME profiles in non-small cell lung cancer (NSCLC) by using 18F-FDG PET/CT radiomics and clinical characteristics.The RNA-seq data of 1145 NSCLC patients from The Cancer Genome Atlas (TCGA) cohort were analyzed. Then, 221 NSCLC patients from Daping Hospital (DPH) cohort received18F-FDG PET/CT scans before treatment and CD8 expression of the tumor samples were tested. The Artificial Intelligence Kit software was used to extract radiomic features of PET/CT images and develop a radiomics signature. The models were established by radiomics, clinical features, and radiomics-clinical combination, respectively, the performance of which was calculated by receiver operating curves (ROCs) and compared by DeLong test. Moreover, based on radiomics score (Rad-score) and clinical features, a nomogram was established. Finally, we applied the combined model to evaluate TIME phenotypes of NSCLC patients in The Cancer Imaging Archive (TCIA) cohort (n = 39).TCGA data showed CD8 expression could represent the TIME profiles in NSCLC. In DPH cohort, PET/CT radiomics model outperformed CT model (AUC: 0.907 vs. 0.861, P = 0.0314) to predict CD8 expression. Further, PET/CT radiomics-clinical combined model (AUC = 0.932) outperformed PET/CT radiomics model (AUC = 0.907, P = 0.0326) or clinical model (AUC = 0.868, P = 0.0036) to predict CD8 expression. In the TCIA cohort, the predicted CD8-high group had significantly higher immune scores and more activated immune pathways than the predicted CD8-low group (P = 0.0421).Our study indicates that 18F-FDG PET/CT radiomics-clinical combined model could be a clinically practical method to non-invasively detect the tumor immune status in NSCLCs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shr发布了新的文献求助10
4秒前
Jasper应助尊敬寒松采纳,获得10
5秒前
BruceQ完成签到 ,获得积分10
8秒前
8秒前
hahhaha发布了新的文献求助10
11秒前
暄anbujun发布了新的文献求助10
12秒前
尊敬寒松完成签到,获得积分10
12秒前
12秒前
个性的紫菜应助桃甜汽水采纳,获得10
13秒前
卡哥完成签到,获得积分10
15秒前
wure10完成签到 ,获得积分10
16秒前
尊敬寒松发布了新的文献求助10
18秒前
20秒前
爱笑的眼睛完成签到,获得积分10
21秒前
暄anbujun完成签到,获得积分10
21秒前
今天你读文献了吗完成签到,获得积分10
22秒前
Aline完成签到,获得积分10
22秒前
No发布了新的文献求助10
24秒前
25秒前
qing_he应助hahhaha采纳,获得10
27秒前
Leohp完成签到,获得积分10
27秒前
倩倩完成签到,获得积分10
30秒前
卜念发布了新的文献求助10
32秒前
32秒前
晓书完成签到 ,获得积分10
33秒前
小木又寸完成签到,获得积分10
34秒前
35秒前
37秒前
太阳完成签到 ,获得积分10
38秒前
地三鲜发布了新的文献求助10
41秒前
善学以致用应助彩色半芹采纳,获得10
42秒前
陈生发布了新的文献求助10
42秒前
YC完成签到 ,获得积分10
47秒前
L77完成签到,获得积分0
49秒前
Fei完成签到,获得积分10
50秒前
tianzml0应助叶问采纳,获得10
50秒前
温婉的紫霜完成签到,获得积分10
52秒前
早日毕业完成签到,获得积分10
53秒前
Fei发布了新的文献求助10
53秒前
luckyd完成签到 ,获得积分0
57秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162968
求助须知:如何正确求助?哪些是违规求助? 2813990
关于积分的说明 7902666
捐赠科研通 2473613
什么是DOI,文献DOI怎么找? 1316952
科研通“疑难数据库(出版商)”最低求助积分说明 631546
版权声明 602187