亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Step by step: A hierarchical framework for multi-hop knowledge graph reasoning with reinforcement learning

计算机科学 可解释性 人工智能 强化学习 关系(数据库) 图形 机器学习 理论计算机科学 数据挖掘
作者
Anjie Zhu,Deqiang Ouyang,Shuang Liang,Jie Shao
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:248: 108843-108843 被引量:28
标识
DOI:10.1016/j.knosys.2022.108843
摘要

Recently, knowledge graph reasoning has sparked great interest in research community, which aims at inferring missing information in triples and provides critical support to various tasks (e.g., question answering and recommendation). To date, multi-hop reasoning is a dominant approach which infers the target answer by walking along the path connecting entities and relations, ensuring both accuracy and interpretability. However, in most knowledge graphs, there are multiple relations related to an identical entity, and multiple tail entities for an identical pair of head entity and relation. Due to this one-to-many dilemma, enlarged action space and ignoring logical relationship between entity and relation increase the difficulty of learning. In order to deal with such an issue, this work presents a novel paradigm for knowledge graph reasoning by decomposing it to a two-level hierarchical decision process. We apply the hierarchical reinforcement learning framework which dismantles the task into a high-level process for relation detector and a low-level process for entity reasoning, respectively. In this way, the action space is effectively controlled where the policies can be optimized. The interactions between entity and relation decision enhance the rationality of reasoning. Moreover, we introduce a dynamic prospect mechanism for low-level policy where the information can guide us to a refined and improved action space, assisted by embedding based method. Our proposed model is evaluated on four benchmark datasets and the results validate its superiority over state-of-the-art baselines, showing the interpretability of reasoning process simultaneously.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助嘟嘟嘟嘟采纳,获得10
4秒前
朴素的如豹完成签到,获得积分10
9秒前
机智大白菜真实的钥匙完成签到,获得积分10
10秒前
NexusExplorer应助李响采纳,获得10
11秒前
bkagyin应助mmyhn采纳,获得10
12秒前
longh完成签到,获得积分10
12秒前
w_tiger完成签到 ,获得积分10
19秒前
飞快的孱完成签到,获得积分10
23秒前
23秒前
仙女完成签到 ,获得积分10
34秒前
潇潇雨歇完成签到,获得积分10
35秒前
汉堡包应助meikoo采纳,获得10
41秒前
科研通AI5应助科研通管家采纳,获得10
41秒前
深情安青应助科研通管家采纳,获得10
41秒前
目目应助科研通管家采纳,获得10
41秒前
Blank发布了新的文献求助10
56秒前
58秒前
Tender完成签到,获得积分10
1分钟前
kk发布了新的文献求助10
1分钟前
可爱的函函应助Blank采纳,获得10
1分钟前
lulu8809完成签到,获得积分10
1分钟前
1分钟前
今后应助木南采纳,获得10
1分钟前
meikoo发布了新的文献求助10
1分钟前
1分钟前
1分钟前
韩雨桐发布了新的文献求助10
1分钟前
shl发布了新的文献求助10
1分钟前
1分钟前
CodeCraft应助shl采纳,获得30
1分钟前
1分钟前
1分钟前
FashionBoy应助yqf采纳,获得10
1分钟前
1分钟前
1分钟前
阿溪发布了新的文献求助10
1分钟前
yqf发布了新的文献求助10
1分钟前
1分钟前
今后应助清雨采纳,获得10
1分钟前
sam完成签到 ,获得积分10
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555687
求助须知:如何正确求助?哪些是违规求助? 3131341
关于积分的说明 9390713
捐赠科研通 2831030
什么是DOI,文献DOI怎么找? 1556295
邀请新用户注册赠送积分活动 726483
科研通“疑难数据库(出版商)”最低求助积分说明 715803