Time-Dependent Reliability of Dynamic Systems Using Subset Simulation With Splitting Over a Series of Correlated Time Intervals

蒙特卡罗方法 随机变量 随机过程 条件概率 计算机科学 可靠性(半导体) 系列(地层学) 概率分布 随机模拟 算法 数学优化 数学 应用数学 统计 功率(物理) 古生物学 物理 生物 量子力学
作者
Zhonglai Wang,Zissimos P. Mourelatos,Jing Li,Amandeep Singh,Igor Baseski
标识
DOI:10.1115/detc2013-12257
摘要

Time-dependent reliability is the probability that a system will perform its intended function successfully for a specified time. Unless many and often unrealistic assumptions are made, the accuracy and efficiency of time-dependent reliability estimation are major issues which may limit its practicality. Monte Carlo simulation (MCS) is accurate and easy to use but it is computationally prohibitive for high dimensional, long duration, time-dependent (dynamic) systems with a low failure probability. This work addresses systems with random parameters excited by stochastic processes. Their response is calculated by time integrating a set of differential equations at discrete times. The limit state functions are therefore, explicit in time and depend on time-invariant random variables and time-dependent stochastic processes. We present an improved subset simulation with splitting approach by partitioning the original high dimensional random process into a series of correlated, short duration, low dimensional random processes. Subset simulation reduces the computational cost by introducing appropriate intermediate failure sub-domains to express the low failure probability as a product of larger conditional failure probabilities. Splitting is an efficient sampling method to estimate the conditional probabilities. The proposed subset simulation with splitting not only estimates the time-dependent probability of failure at a given time but also estimates the cumulative distribution function up to that time with approximately the same cost. A vibration example involving a vehicle on a stochastic road demonstrates the advantages of the proposed approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
凌凌嘻应助DrNaz采纳,获得10
刚刚
XIAOJU_U完成签到 ,获得积分10
刚刚
酷炫河马关注了科研通微信公众号
1秒前
结实老四发布了新的文献求助10
1秒前
年轻羿发布了新的文献求助10
1秒前
yw完成签到,获得积分20
1秒前
2秒前
2秒前
柯不正发布了新的文献求助10
2秒前
HongMou发布了新的文献求助10
3秒前
小蘑菇应助jdndbd采纳,获得10
3秒前
luca完成签到,获得积分10
5秒前
小米完成签到,获得积分10
5秒前
套个猴子完成签到,获得积分20
5秒前
obsession发布了新的文献求助20
5秒前
何双发布了新的文献求助10
6秒前
方文杰发布了新的文献求助10
6秒前
几酌发布了新的文献求助10
6秒前
机灵水卉发布了新的文献求助10
7秒前
ven完成签到,获得积分10
7秒前
科研通AI6.1应助小马采纳,获得10
8秒前
BowieHuang应助loveme采纳,获得10
8秒前
BowieHuang应助loveme采纳,获得10
8秒前
宋子琛完成签到,获得积分10
9秒前
WJ完成签到,获得积分10
9秒前
ding应助成就的咖啡采纳,获得10
9秒前
LERROR发布了新的文献求助10
10秒前
烟花应助小蟹采纳,获得10
11秒前
小二郎应助舒适尔容采纳,获得10
11秒前
11秒前
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
酷炫若魔完成签到,获得积分10
12秒前
13秒前
英姑应助zheng-homes采纳,获得10
13秒前
英俊的铭应助pxl99567采纳,获得10
13秒前
俗签完成签到,获得积分10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776350
求助须知:如何正确求助?哪些是违规求助? 5628713
关于积分的说明 15442059
捐赠科研通 4908468
什么是DOI,文献DOI怎么找? 2641217
邀请新用户注册赠送积分活动 1589167
关于科研通互助平台的介绍 1543851