亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Time-Dependent Reliability of Dynamic Systems Using Subset Simulation With Splitting Over a Series of Correlated Time Intervals

蒙特卡罗方法 随机变量 随机过程 条件概率 计算机科学 可靠性(半导体) 系列(地层学) 概率分布 随机模拟 算法 数学优化 数学 应用数学 统计 功率(物理) 古生物学 物理 生物 量子力学
作者
Zhonglai Wang,Zissimos P. Mourelatos,Jing Li,Amandeep Singh,Igor Baseski
标识
DOI:10.1115/detc2013-12257
摘要

Time-dependent reliability is the probability that a system will perform its intended function successfully for a specified time. Unless many and often unrealistic assumptions are made, the accuracy and efficiency of time-dependent reliability estimation are major issues which may limit its practicality. Monte Carlo simulation (MCS) is accurate and easy to use but it is computationally prohibitive for high dimensional, long duration, time-dependent (dynamic) systems with a low failure probability. This work addresses systems with random parameters excited by stochastic processes. Their response is calculated by time integrating a set of differential equations at discrete times. The limit state functions are therefore, explicit in time and depend on time-invariant random variables and time-dependent stochastic processes. We present an improved subset simulation with splitting approach by partitioning the original high dimensional random process into a series of correlated, short duration, low dimensional random processes. Subset simulation reduces the computational cost by introducing appropriate intermediate failure sub-domains to express the low failure probability as a product of larger conditional failure probabilities. Splitting is an efficient sampling method to estimate the conditional probabilities. The proposed subset simulation with splitting not only estimates the time-dependent probability of failure at a given time but also estimates the cumulative distribution function up to that time with approximately the same cost. A vibration example involving a vehicle on a stochastic road demonstrates the advantages of the proposed approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nina完成签到 ,获得积分10
5秒前
今后应助青枫采纳,获得30
5秒前
9秒前
ZZQ完成签到,获得积分10
12秒前
粗暴的遥完成签到,获得积分10
19秒前
21秒前
ZQ完成签到,获得积分10
26秒前
zzz完成签到,获得积分10
29秒前
tong完成签到 ,获得积分10
30秒前
善学以致用应助bzmuzxy采纳,获得10
36秒前
41秒前
黄晓旭完成签到,获得积分10
42秒前
Duan完成签到 ,获得积分10
43秒前
43秒前
46秒前
niuniu顺利毕业完成签到 ,获得积分10
47秒前
47秒前
Mandy发布了新的文献求助10
49秒前
bzmuzxy发布了新的文献求助10
50秒前
55秒前
1分钟前
香蕉觅云应助Mandy采纳,获得10
1分钟前
1分钟前
红橙黄绿蓝靛紫111完成签到,获得积分10
1分钟前
1分钟前
Mandy完成签到,获得积分20
1分钟前
小马甲应助cccccccc采纳,获得20
1分钟前
赘婿应助小美采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
wqw发布了新的文献求助10
1分钟前
你学习了吗我学不了一点完成签到 ,获得积分10
1分钟前
小美发布了新的文献求助10
1分钟前
1分钟前
柒年啵啵完成签到 ,获得积分10
1分钟前
cccccccc发布了新的文献求助20
1分钟前
小美完成签到,获得积分10
1分钟前
hkxfg发布了新的文献求助10
1分钟前
2213sss完成签到,获得积分10
1分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965604
求助须知:如何正确求助?哪些是违规求助? 3510843
关于积分的说明 11155405
捐赠科研通 3245345
什么是DOI,文献DOI怎么找? 1792840
邀请新用户注册赠送积分活动 874118
科研通“疑难数据库(出版商)”最低求助积分说明 804188