重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Time-Dependent Reliability of Dynamic Systems Using Subset Simulation With Splitting Over a Series of Correlated Time Intervals

蒙特卡罗方法 随机变量 随机过程 条件概率 计算机科学 可靠性(半导体) 系列(地层学) 概率分布 随机模拟 算法 数学优化 数学 应用数学 统计 功率(物理) 古生物学 物理 生物 量子力学
作者
Zhonglai Wang,Zissimos P. Mourelatos,Jing Li,Amandeep Singh,Igor Baseski
标识
DOI:10.1115/detc2013-12257
摘要

Time-dependent reliability is the probability that a system will perform its intended function successfully for a specified time. Unless many and often unrealistic assumptions are made, the accuracy and efficiency of time-dependent reliability estimation are major issues which may limit its practicality. Monte Carlo simulation (MCS) is accurate and easy to use but it is computationally prohibitive for high dimensional, long duration, time-dependent (dynamic) systems with a low failure probability. This work addresses systems with random parameters excited by stochastic processes. Their response is calculated by time integrating a set of differential equations at discrete times. The limit state functions are therefore, explicit in time and depend on time-invariant random variables and time-dependent stochastic processes. We present an improved subset simulation with splitting approach by partitioning the original high dimensional random process into a series of correlated, short duration, low dimensional random processes. Subset simulation reduces the computational cost by introducing appropriate intermediate failure sub-domains to express the low failure probability as a product of larger conditional failure probabilities. Splitting is an efficient sampling method to estimate the conditional probabilities. The proposed subset simulation with splitting not only estimates the time-dependent probability of failure at a given time but also estimates the cumulative distribution function up to that time with approximately the same cost. A vibration example involving a vehicle on a stochastic road demonstrates the advantages of the proposed approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
妙木仙完成签到,获得积分10
1秒前
义气的凌萱完成签到,获得积分10
1秒前
高贵的如曼应助豆豆采纳,获得10
1秒前
1秒前
乘风破浪完成签到 ,获得积分10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
认真的静芙完成签到 ,获得积分10
2秒前
嘿嘿发布了新的文献求助10
2秒前
2秒前
1609028发布了新的文献求助10
2秒前
2秒前
CCC完成签到,获得积分10
3秒前
balabala完成签到,获得积分10
3秒前
上官若男应助可爱飞绿采纳,获得20
3秒前
槐零音完成签到,获得积分10
3秒前
3秒前
研友_851KE8发布了新的文献求助10
3秒前
qin完成签到,获得积分10
3秒前
zlf发布了新的文献求助10
4秒前
melon发布了新的文献求助10
4秒前
4秒前
ohno耶耶耶发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
谭欣怡发布了新的文献求助10
5秒前
iNk应助kirren采纳,获得20
6秒前
Gasoline.完成签到,获得积分20
6秒前
MingY发布了新的文献求助10
6秒前
6秒前
Pikachu举报寒梅求助涉嫌违规
6秒前
长小右完成签到,获得积分10
6秒前
7秒前
归零者发布了新的文献求助10
7秒前
橘子1发布了新的文献求助10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466870
求助须知:如何正确求助?哪些是违规求助? 4570586
关于积分的说明 14326244
捐赠科研通 4497151
什么是DOI,文献DOI怎么找? 2463752
邀请新用户注册赠送积分活动 1452682
关于科研通互助平台的介绍 1427605