Hierarchically nanostructured Co(OH)2/MXene/SiO2/n-docosane phase-change composites for enhancement of supercapacitor performance under in-situ thermal management

材料科学 超级电容器 复合数 电极 电容 储能 微观结构 复合材料 电化学 热稳定性 相变材料 纳米技术 热的 化学工程 化学 功率(物理) 物理 物理化学 量子力学 气象学 工程类
作者
Zhao Sun,Huan Liu,Xiaodong Wang
出处
期刊:Composites Part B-engineering [Elsevier]
卷期号:242: 110112-110112 被引量:25
标识
DOI:10.1016/j.compositesb.2022.110112
摘要

Electrochemical energy-storage devices usually suffer from performance deterioration at high operating temperatures due to exothermic redox reactions during the cyclic charge–discharge process. Aiming at addressing this crucial issue, we have developed a novel type of thermoregulatory electrode material based on the hierarchically nanostructured Co(OH)2/MXene/SiO2/n-docosane phase-change composite for enhancing electrochemical energy-storage performance of supercapacitors through in-situ thermal management. The resultant composite shows a regular spherical morphology and a layer-by-layer core-shell microstructure for the phase-change microcapsules anchored on MXene nanosheets, together with a well-defined nanostructured Co(OH)2 layer deposited on the surfaces of the microcapsules and nanosheets. Through a multilevel integration of phase change material (PCM) and electroactive materials in an electrode material, the microenvironmental temperature surrounding the working electrode can be regulated effectively, buffering the heat impact to supercapacitors at high temperature. The phase-change composite achieved a satisfactory latent heat capacity of over 130 J/g together with good thermal cycling stability for long-term use in thermal management of supercapacitors. Compared to conventional electrode material without a PCM, the thermoregulatory electrode material developed in the current work exhibits an increase in specific capacitance by 6.6% at 45 °C and in capacitance retention by 10.8% after 3000 charge-discharge cycles at 45 °C, suggesting better electrochemical energy storage performance and higher charge-discharge cycling stability at high operating temperature thanks to its in-situ thermal management effectiveness. This study provides a promising approach to developing high-performance electrode materials for supercapacitor application over a broad temperature range.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
阔达萧完成签到,获得积分20
刚刚
恋上鱼的猫完成签到,获得积分10
刚刚
刚刚
aprise完成签到 ,获得积分10
1秒前
爆米花应助舒适的紫丝采纳,获得10
1秒前
科研萌新完成签到,获得积分10
1秒前
1秒前
一夜很静应助细腻白柏采纳,获得10
2秒前
3秒前
搜集达人应助www采纳,获得10
3秒前
Yangpc完成签到,获得积分10
3秒前
guozi完成签到,获得积分10
3秒前
CipherSage应助he采纳,获得10
3秒前
王正浩发布了新的文献求助10
4秒前
4秒前
领导范儿应助8个老登采纳,获得10
4秒前
5秒前
Silieze完成签到,获得积分10
5秒前
5秒前
称心铭发布了新的文献求助30
6秒前
杨自强发布了新的文献求助10
7秒前
东海虞明完成签到,获得积分10
8秒前
evak完成签到 ,获得积分10
8秒前
平常的不平给平常的不平的求助进行了留言
9秒前
柒月完成签到,获得积分10
9秒前
9秒前
9秒前
jiayou完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
棟仔超人完成签到,获得积分10
10秒前
科研通AI5应助czt采纳,获得10
11秒前
11秒前
feizai9527完成签到,获得积分10
11秒前
淡水痕完成签到,获得积分10
11秒前
hhhhhh完成签到,获得积分10
11秒前
z1完成签到 ,获得积分10
12秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678