Hierarchically nanostructured Co(OH)2/MXene/SiO2/n-docosane phase-change composites for enhancement of supercapacitor performance under in-situ thermal management

材料科学 超级电容器 复合数 电极 电容 储能 微观结构 复合材料 电化学 热稳定性 相变材料 纳米技术 热的 化学工程 化学 功率(物理) 物理 物理化学 量子力学 气象学 工程类
作者
Zhao Sun,Huan Liu,Xiaodong Wang
出处
期刊:Composites Part B-engineering [Elsevier]
卷期号:242: 110112-110112 被引量:25
标识
DOI:10.1016/j.compositesb.2022.110112
摘要

Electrochemical energy-storage devices usually suffer from performance deterioration at high operating temperatures due to exothermic redox reactions during the cyclic charge–discharge process. Aiming at addressing this crucial issue, we have developed a novel type of thermoregulatory electrode material based on the hierarchically nanostructured Co(OH)2/MXene/SiO2/n-docosane phase-change composite for enhancing electrochemical energy-storage performance of supercapacitors through in-situ thermal management. The resultant composite shows a regular spherical morphology and a layer-by-layer core-shell microstructure for the phase-change microcapsules anchored on MXene nanosheets, together with a well-defined nanostructured Co(OH)2 layer deposited on the surfaces of the microcapsules and nanosheets. Through a multilevel integration of phase change material (PCM) and electroactive materials in an electrode material, the microenvironmental temperature surrounding the working electrode can be regulated effectively, buffering the heat impact to supercapacitors at high temperature. The phase-change composite achieved a satisfactory latent heat capacity of over 130 J/g together with good thermal cycling stability for long-term use in thermal management of supercapacitors. Compared to conventional electrode material without a PCM, the thermoregulatory electrode material developed in the current work exhibits an increase in specific capacitance by 6.6% at 45 °C and in capacitance retention by 10.8% after 3000 charge-discharge cycles at 45 °C, suggesting better electrochemical energy storage performance and higher charge-discharge cycling stability at high operating temperature thanks to its in-situ thermal management effectiveness. This study provides a promising approach to developing high-performance electrode materials for supercapacitor application over a broad temperature range.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得30
1秒前
田様应助科研通管家采纳,获得10
1秒前
鄂百川完成签到,获得积分10
1秒前
李健应助科研通管家采纳,获得10
1秒前
Akim应助科研通管家采纳,获得10
1秒前
知性的焦发布了新的文献求助10
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
2秒前
科研通AI2S应助科研通管家采纳,获得30
2秒前
wanci应助科研通管家采纳,获得10
2秒前
坚强亦丝应助科研通管家采纳,获得10
2秒前
琅伊应助科研通管家采纳,获得30
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
小马甲应助可爱绮采纳,获得10
2秒前
唐诗阅完成签到,获得积分10
2秒前
3秒前
瀚子发布了新的文献求助20
3秒前
4秒前
4秒前
kw完成签到,获得积分10
6秒前
gao完成签到 ,获得积分10
6秒前
Lucas应助知性的焦采纳,获得10
8秒前
天云端完成签到,获得积分20
9秒前
pl脆脆完成签到 ,获得积分10
10秒前
11秒前
沉静小蚂蚁完成签到,获得积分10
13秒前
Dreamer完成签到,获得积分10
14秒前
GXY完成签到,获得积分10
15秒前
爆米花应助FR采纳,获得10
15秒前
脱糕完成签到 ,获得积分10
16秒前
zzzz完成签到,获得积分10
17秒前
细心香烟完成签到 ,获得积分10
18秒前
夜话风陵杜完成签到 ,获得积分0
21秒前
顺遂完成签到,获得积分10
22秒前
wangfneg发布了新的文献求助10
23秒前
郝富完成签到,获得积分10
23秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Genera Insectorum: Mantodea, Fam. Mantidæ, Subfam. Hymenopodinæ (Classic Reprint) 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3085525
求助须知:如何正确求助?哪些是违规求助? 2738394
关于积分的说明 7549581
捐赠科研通 2388186
什么是DOI,文献DOI怎么找? 1266339
科研通“疑难数据库(出版商)”最低求助积分说明 613430
版权声明 598591