Tire-Road Peak Adhesion Coefficient Estimation Method Based on Fusion of Vehicle Dynamics and Machine Vision

估计员 可观测性 趋同(经济学) 控制理论(社会学) 车辆动力学 传感器融合 计算机科学 人工智能 工程类 数学 控制(管理) 应用数学 统计 经济增长 经济 汽车工程
作者
Bo Leng,Da Jin,Xinchen Hou,Cheng Tian,Lu Xiong,Zhuoping Yu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (11): 21740-21752 被引量:15
标识
DOI:10.1109/tits.2022.3183691
摘要

The tire-road peak adhesion coefficient (TRPAC) describes the tire adhesion limit that a road can provide. The TRPAC is a key parameter for precise vehicle motion control and an important basis for decision-making and planning of intelligent vehicles. Considering the critical and difficult problems in the estimation of TRPAC, such as slow convergence and low accuracy, a TRPAC estimation method based on the fusion of vehicle dynamics and machine vision is proposed in this paper. Based on the observability theory of nonlinear systems, local weak observability of the dynamics-based estimator is analyzed to explain the limitation of a single dynamics-based estimator. The framework of dynamics-image-based fusion estimator is then proposed, including the fusion of data, model and decision levels. A dynamics-based fusion estimator is designed by considering the coupling relationship of longitudinal and lateral tire forces to adapt the conditions of complex excitations. Start-and-stop strategy for the dynamics-based fusion estimator is designed by setting excitation thresholds for different types of road surfaces, which are identified using vision information. Parameter self-tuning for the dynamics-based fusion estimator based on the image-based estimator is proposed to improve convergence speed and reduce oscillation. The results of the simulation and vehicle test show that the road estimation error of the proposed method is within 0.03 and the convergence time is within 0.5 s. Compared with other existing estimators, the fusion estimator achieved better accuracy, sensitivity and stability, particularly when complex excitations were present.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
依居完成签到,获得积分10
1秒前
李健的小迷弟应助xxxlglm采纳,获得10
1秒前
2秒前
玉子卿完成签到,获得积分10
2秒前
mengyi完成签到,获得积分10
3秒前
qs发布了新的文献求助10
4秒前
聪明伊完成签到,获得积分10
4秒前
5秒前
bk2020113458完成签到,获得积分10
5秒前
6秒前
7秒前
7秒前
慕青应助漂亮的衬衫采纳,获得10
7秒前
7秒前
8秒前
XuziZhang完成签到,获得积分10
8秒前
8秒前
Lucas应助133333采纳,获得10
9秒前
徐嘻嘻完成签到,获得积分10
9秒前
9秒前
11秒前
11秒前
11秒前
Faceman发布了新的文献求助20
12秒前
13秒前
524974281完成签到,获得积分20
13秒前
乘风破浪完成签到,获得积分10
13秒前
半斤发布了新的文献求助20
13秒前
13秒前
hhc发布了新的文献求助10
13秒前
冷艳笑卉发布了新的文献求助10
15秒前
巴拉巴拉发布了新的文献求助10
15秒前
15秒前
慕青应助zhn采纳,获得10
16秒前
杳鸢应助524974281采纳,获得200
16秒前
蟹黄包包发布了新的文献求助10
17秒前
ls完成签到,获得积分20
17秒前
如微完成签到 ,获得积分10
18秒前
000000完成签到,获得积分10
18秒前
janan33完成签到,获得积分10
18秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
The Bourse of Babylon: market quotations in the astronomical diaries of Babylonia 500
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308821
求助须知:如何正确求助?哪些是违规求助? 2942271
关于积分的说明 8507774
捐赠科研通 2617189
什么是DOI,文献DOI怎么找? 1430004
科研通“疑难数据库(出版商)”最低求助积分说明 663969
邀请新用户注册赠送积分活动 649186