Spatial-Temporal Attention Graph Convolution Network on Edge Cloud for Traffic Flow Prediction

计算机科学 云计算 GSM演进的增强数据速率 数据挖掘 图形 边缘设备 边缘计算 交通拥挤 实时计算 人工智能 工程类 运输工程 理论计算机科学 操作系统
作者
Qifeng Lai,Jinyu Tian,Wei Wang,Xiping Hu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (4): 4565-4576 被引量:14
标识
DOI:10.1109/tits.2022.3185503
摘要

Accurate short-term traffic flow prediction plays an important role in providing road condition information in the immediate future. With the information, intelligent vehicles can plan and adjust the route to prevent congestion. As a result, many models for short-term traffic flow forecasting have been proposed to date. However, most of them focus on the prediction of the entire traffic network, which could lead to several problems: (1) the entire traffic network could have a large scale and a complex structure, for which the model training is likely to be time-consuming as well as inefficient; (2) processing a large amount of training data on the central cloud could cause much calculation pressure on the server and increase the risk of privacy leakage. In this paper, we propose a Spatial-Temporal Attention Graph Convolution Network on Edge Cloud model (STAGCN-EC). We first divide the entire traffic network into several parts to reduce its scale and complexity. Then, we allocate each part of the network to a certain Roadside Unit (RSU) for training, thus there is no need to process all data on the central server. Besides, we utilize spatial-temporal attention and features extracting module that fits the low computational power devices like RSUs, to capture spatial-temporal dependence and predict traffic flow. At last, we use two highway datasets from District 7 and District 4 in California to validate our model. Through the experiments, we find out that our model performs well both in predicted precision and efficiency compared with the five baseline methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YXH发布了新的文献求助10
1秒前
SYLH应助Elsa采纳,获得10
2秒前
2秒前
bofu发布了新的文献求助30
4秒前
健壮的怜烟应助wzx采纳,获得20
4秒前
serendipity完成签到,获得积分20
4秒前
4秒前
4秒前
毛儿豆儿完成签到,获得积分10
5秒前
zsxml完成签到,获得积分10
5秒前
Aling完成签到,获得积分20
5秒前
CodeCraft应助噜啦噜啦采纳,获得10
6秒前
kkkk完成签到,获得积分10
6秒前
6秒前
情怀应助干净的夏天采纳,获得10
7秒前
早睡早起完成签到,获得积分10
8秒前
8秒前
8秒前
11秒前
bofu发布了新的文献求助10
11秒前
cstp完成签到,获得积分10
12秒前
12秒前
12秒前
就爱吃土豆完成签到,获得积分0
13秒前
宇婷发布了新的文献求助10
13秒前
毛毛毛毛小毛完成签到,获得积分10
13秒前
天天快乐应助Jason采纳,获得10
14秒前
15秒前
serendipity发布了新的文献求助10
16秒前
bofu发布了新的文献求助10
18秒前
18秒前
ding应助淡淡夕阳采纳,获得10
19秒前
19秒前
19秒前
华仔应助nimonimo采纳,获得10
19秒前
19秒前
19秒前
iroko完成签到,获得积分10
20秒前
20秒前
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956295
求助须知:如何正确求助?哪些是违规求助? 3502477
关于积分的说明 11107954
捐赠科研通 3233164
什么是DOI,文献DOI怎么找? 1787196
邀请新用户注册赠送积分活动 870506
科研通“疑难数据库(出版商)”最低求助积分说明 802105