氢氧化物
扩散
热力学
从头算
化学
质子
分子动力学
从头算量子化学方法
恒温器
皮秒
计算化学
物理
统计物理学
分子
量子力学
有机化学
激光器
作者
Daniel Muñoz‐Santiburcio
摘要
Despite its simple molecular formula, obtaining an accurate in silico description of water is far from straightforward. Many of its very peculiar properties are quite elusive, and in particular, obtaining good estimations of the diffusion coefficients of the solvated proton and hydroxide at a reasonable computational cost has been an unsolved challenge until now. Here, I present extensive results of several unusually long ab initio molecular dynamics (MD) simulations employing different combinations of the Born-Oppenheimer and second-generation Car-Parrinello MD propagation methods with different ensembles (NVE and NVT) and thermostats, which show that these methods together with the RPBE-D3 functional provide a very accurate estimation of the diffusion coefficients of the solvated H3O+ and OH- ions, together with an extremely accurate description of several properties of neutral water (such as the structure of the liquid and its diffusion and shear viscosity coefficients). In addition, I show that the estimations of DH3O+ and DOH- depend dramatically on the simulation length, being necessary to reach timescales in the order of hundreds of picoseconds to obtain reliable results.
科研通智能强力驱动
Strongly Powered by AbleSci AI