Design and Development of RNN Anomaly Detection Model for IoT Networks

计算机科学 深度学习 人工智能 循环神经网络 异常检测 卷积神经网络 机器学习 入侵检测系统 人工神经网络 数据挖掘
作者
Imtiaz Ullah,Qusay H. Mahmoud
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 62722-62750 被引量:103
标识
DOI:10.1109/access.2022.3176317
摘要

Cybersecurity is important today because of the increasing growth of the Internet of Things (IoT), which has resulted in a variety of attacks on computer systems and networks. As the number of various IoT devices and services grows, cyber security will become an increasingly difficult issue to manage. Malicious traffic identification using deep learning techniques has emerged as a key component of network-based intrusion detection systems (IDS). Deep learning methods have been a research focus in network intrusion detection. A recurrent neural network is useful in a wide range of applications. This paper proposes a novel deep learning model for detecting anomalies in IoT networks using recurrent neural networks. The proposed model is implemented in IoT networks utilizing LSTM, BiLSTM, and GRU-based approaches for anomaly detection. A convolutional neural network can analyze input features without losing important information, making them particularly well suited for feature learning. In addition, we propose a hybrid deep learning model based on convolutional and recurrent neural networks. Finally, employing LSTM, BiLSTM, and GRU-based techniques, we propose a lightweight deep learning model for binary classification. The proposed deep learning models are validated using NSLKDD, BoT-IoT, IoT-NI, MQTT, MQTTset, IoT-23, and IoT-DS2 datasets. Our proposed binary and multiclass classification model achieved high accuracy, precision, recall, and F1 score compared to current deep learning implementations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助lisali采纳,获得10
1秒前
夏天来了发布了新的文献求助30
1秒前
dmj发布了新的文献求助10
1秒前
完美世界应助绿夏采纳,获得30
1秒前
dong发布了新的文献求助10
2秒前
ssssssssci完成签到,获得积分10
2秒前
2秒前
3秒前
牛牛发布了新的文献求助10
3秒前
思源应助初晴采纳,获得10
3秒前
景木游发布了新的文献求助10
4秒前
roy_chiang发布了新的文献求助10
5秒前
勤劳影子发布了新的文献求助10
5秒前
英俊的铭应助难得糊涂zq采纳,获得10
5秒前
ming完成签到,获得积分10
5秒前
5秒前
Damon完成签到,获得积分20
6秒前
水下月完成签到,获得积分10
7秒前
Phoebe发布了新的文献求助10
7秒前
neeeru完成签到,获得积分10
7秒前
uu发布了新的文献求助10
7秒前
8秒前
星辰大海应助Mr_clf采纳,获得10
9秒前
追寻凌晴完成签到,获得积分10
9秒前
Cassie完成签到,获得积分10
9秒前
10秒前
10秒前
靠得住的小仙女完成签到,获得积分10
11秒前
2345应助ZY采纳,获得10
11秒前
jianguo完成签到,获得积分10
11秒前
11秒前
牛牛完成签到,获得积分20
11秒前
honoruru发布了新的文献求助10
11秒前
daheeeee发布了新的文献求助20
12秒前
12秒前
草莓钙片完成签到,获得积分10
13秒前
充电宝应助安静凡旋采纳,获得10
14秒前
15秒前
15秒前
刻苦的亦绿关注了科研通微信公众号
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3564116
求助须知:如何正确求助?哪些是违规求助? 3137325
关于积分的说明 9421827
捐赠科研通 2837701
什么是DOI,文献DOI怎么找? 1559976
邀请新用户注册赠送积分活动 729224
科研通“疑难数据库(出版商)”最低求助积分说明 717246